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ABSTRACT 

 

AN INVESTIGATION INTO BUILDING OCCUPANT BEHAVIOR OF 

DIFFERENT HOUSEHOLD TYPOLOGIES IN ARCHITECTURE 

 

 

 

Erol Ağırsoy, Meliha İpek 

Master of Architecture, Architecture 

Supervisor : Assoc. Prof. Dr. İpek Gürsel Dino 

 

 

February 2022, 94 pages 

 

 

Humans who directly interact with the built environment are a significant parameter 

of the architectural design process. The uncertainty in occupant behavior is a variable 

parameter of sustainability in architecture. Human building interaction affects 

energy consumption and creates an unpredicted result for the building's calculated 

energy use. The interaction between the occupant and the building is significant for 

establishing new areas of architectural inquiry. The study aims to observe the 

influence of occupancy behavior with various type schedules on building 

performance. Occupancy, equipment, and lighting schedules are modeled and 

simulated to investigate the energy consumption of residential buildings. The thesis 

is influenced by the changes in daily life due to the Covid-19 pandemic and 

lockdowns. Different household cases are modeled with post-pandemic conditions 

and analyzed to the conception of the role of the occupant in actual energy 

consumption. 

Keywords: Occupant Behavior, Human-Building Interaction, Occupancy Schedules, 

Building Performance Simulation, Household Typologies 
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ÖZ 

 

MİMARLIKTA FARKLI HANE TİPOLOJİLERİNDEKİ BİNA 

KULLANICI DAVRANIŞLARININ İNCELENMESİ 

 

 

 

Erol Ağırsoy, Meliha İpek 

Yüksek Lisans, Mimarlık 

Tez Yöneticisi: Doç. Dr. İpek Gürsel Dino 

 

 

Şubat 2022, 94 sayfa 

 

 

Yapılı çevre ile doğrudan etkileşime giren insanlar, mimari tasarım sürecinin önemli 

bir parametresidir. Kullanıcı davranışındaki belirsizlik, mimaride sürdürülebilirliğin 

değişken bir etkenidir. İnsan bina etkileşimi enerji tüketimini etkiler ve binanın 

hesaplanan enerji tüketimi için öngörülemeyen bir sonuç yaratır. Kullanıcı ve bina 

arasındaki etkileşim, yeni mimari araştırma alanları oluşturmak için oldukça 

önemlidir. Çalışmanın amacı, çeşitli profildeki kullanıcı davranışlarının bina 

performansı üzerindeki etkisini gözlemlemektir. Konut binalarınındaki enerji 

tüketimini incelemek için kullanıcı, ev aletleri ve aydınlatma çizelgeleri 

oluşturulmuş ve simülasyonlar yapılmıştır. Tez, Covid-19 pandemisi ve karantinalar 

nedeniyle günlük yaşamdaki değişikliklerden etkilenmiştir. Gerçek enerji 

tüketiminde bina sakininin rolünün anlaşılması için, farklı hanehalkı tipolojileri 

pandemi sonrası günlük yaşama uygun olarak modellenmiş ve  analiz edilmiştir.  

 

Anahtar Kelimeler: Kullanıcı Davranışları, İnsan Bina Etkileşimi, Kullanıcı 

Şemaları, Bina Performans Simülasyonu, Hanehalkı Tipolojileri 
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CHAPTER 1  

1 INTRODUCTION  

1.1 The Motivation of Thesis 

Since the modern people spend most of their time indoors, undoubtfully the 

fundamental aim of the buildings is to generate a comfortable living and working 

environment for humans. The most significant measure for a qualified shelter is a 

suitable interior environment that affects the well-being, productivity, and comfort 

of the occupants.1 In this regard, the architects and engineers are responsible for 

ensuring a certain comfort level to the occupants by using various environmental and 

mechanical systems that mainly rely on energy resources.  

Globally, the energy consumption of the building industry is constantly increasing, 

and more over one-fifth of total supplied energy consumption is accounted by the 

building industry.2 According to International Energy Agency Annex 53, there are 

mainly six causes that affect the energy use of a building: climate, building envelop 

characteristics, building serves and energy system characteristics, building operation 

and maintenance, occupant activities and behavior, the provided indoor 

environmental quality.3  

                                                 

 

1 International Energy Agency and Technology Collaboration Programme, Indoor Air Quality 

Design and Control in Low-Energy Residential Buildings, 2020. 
2 Da Yan, Tianzhen Hong, Bing Dong, Ardeshir Mahdavi, et al., “IEA EBC Annex 66: Definition 

and Simulation of Occupant Behavior in Buildings,” Energy and Buildings, vol. 156, 2017, 2, 

https://doi.org/10.1016/j.enbuild.2017.09.084. 
3 Energy in Buildings and Communities Programme (EBC), “Final Report Annex 53. Total Energy 

Use in Buildings Analysis and Evaluation Methods,” International Energy Agency Programme on 

Energy in Buildings and Communities, 2016, 7. 
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Building performance simulations (BPS) evaluate the driver factors to predict 

building energy consumption. BPS is utilized in architectural design to generate 

ecologically responsible design solutions and reveal interactions between the 

building and its occupants, HVAC systems, and outdoor temperature.4 BPS is 

influenced by a number of performance and user-related factors, including building 

characteristics, environmental control systems, weather conditions, occupants, 

internal loads, operation strategies and schedules.5 An accurate simulation depends 

on the quantity and quality of input parameters and a precise building model.  

One of the primary purposes of building performance calculations is to predict the 

energy performance of a building before it is in use. However, there is usually a 

difference between the predicted and measured performance of the building, which 

is defined as the performance gap. Differences in occupancy behavior are accepted 

as the fundamental cause of the performance gap. In fact, different occupant behavior 

can create a 12% variation from predicted energy usage.6 This study focuses on the 

occupancy that is considered the root cause of the uncertainty in building 

performance. 

Occupant behavior is a multidisciplinary research topic related to social and 

behavioral science, building science, sensing and control technologies, computing 

science, and data science.7 The desire of the occupants to achieve comfort within 

their environment is the primary reason behind the energy-related occupant 

behavior. Occupants may have an impact upon the indoor environment to fulfill their 

                                                 

 

4 J. A. Clarke and J. L.M. Hensen, “Integrated Building Performance Simulation: Progress, 

Prospects and Requirements,” Building and Environment 91 (2015): 294–306, 

https://doi.org/10.1016/j.buildenv.2015.04.002. 
5 Martin Arthur Fischer, “Building Energy Performance Simulation Tools - a Life-Cycle and 

Interoperable Perspective,” no. January (2007): 43. 
6 Lina La Fleur, Bahram Moshfegh, and Patrik Rohdin, “Measured and Predicted Energy Use and 

Indoor Climate before and after a Major Renovation of an Apartment Building in Sweden,” Energy 

and Buildings 146 (2017): 98–110, https://doi.org/10.1016/j.enbuild.2017.04.042. 
7 Tianzhen Hong, Sarah C. Taylor-Lange, Simona D’Oca, Da Yan, et al., “Advances in Research 

and Applications of Energy-Related Occupant Behavior in Buildings,” Energy and Buildings 116 

(2016): 694–702, https://doi.org/10.1016/j.enbuild.2015.11.052. 
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comfort conditions by changing thermostat set point, lighting on/of control, window 

open/close control, HVAC on/off control, and pulling up/down blinds.8 Therefore, 

analyzing user behaviors increases the possibility of providing occupant comfort. 

The limited knowledge of occupant behavior leads to unreliable and overly 

simplified building performance predictions, differences in building design 

optimization, and inaccurate building energy simulation.9  

Integration of occupant schedules with BPS enables to simulate energy-related 

occupancy behavior in buildings and decreases the performance gap between 

predicted and measured energy consumption.10 Occupant presence, movement and 

action models are the human-building interaction parameters for simulations. The 

number of occupants is determined in the presence model. The movement model 

represents the location of occupants and their movement between different zones. 

Finally, the action model analysis the interaction between the occupant and building 

systems such as lighting and HVAC.11 The thesis studies the occupancy models that 

have greater impact on building performance. 

Occupancy has various methods for modeling and simulation. Statistical occupancy 

schedules are based on observation and data collection from real-life studies.12 These 

schedules are the early examples of occupancy schedules represent an unrealistic 

result compared to real life due to ignorance of the individual differences. However, 

the most common and user-friendly interface occurs in this type of schedules. 

Stochastic models represent unexpected changes in behavior across time depending 

                                                 

 

8 Mohamed M. Ouf, William O’Brien, and H. Burak Gunay, “Improving Occupant-Related Features 

in Building Performance Simulation Tools,” Building Simulation 11, no. 4 (2018): 803–17, 

https://doi.org/10.1007/s12273-018-0443-y. 
9 Yan, Hong, Dong, Mahdavi, et al., “IEA EBC Annex 66: Definition and Simulation of Occupant 

Behavior in Buildings.” 
10 Hong, Taylor-Lange, D’Oca, Yan, et al., “Advances in Research and Applications of Energy-

Related Occupant Behavior in Buildings.” 
11 Seddigheh Norouziasl, Amirhosein Jafari, and Yimin Zhu, “Modeling and Simulation of Energy-

Related Human-Building Interaction : A Systematic Review,” Journal of Building Engineering 44, 

no. February (2021): 4–20, https://doi.org/10.1016/j.jobe.2021.102928. 
12 Ibid. 
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on mathematical models. Models based on machine learning examine historical 

trends in data received from various monitoring systems in order to extract energy-

related patterns of occupants. Recent research has focused on agent-based models to 

examine human-building interaction. "The purpose of the agent-based modeling is 

to mimic a real-world occupant: an autonomous agent that interacts with both its 

environment and other agents, and makes behavior decisions based on the level of 

its thermal comfort." 13 

The building performance simulation and occupancy researchers often study offices 

as the case environment due to more defined and predictable user profiles than 

residential or other building types. However, due to the Covid pandemic, home 

working environments increased, and the energy consumption of residential 

buildings was substantially affected. Globalization of work environments, 

developments in digital infrastructure, and the growth of the service industry also 

support home working environments. The thesis utilizes the present situation of 

residential buildings and home office environments that generates a current research 

area for occupancy and energy consumption. 

This study aims to investigate the impact of occupancy on energy consumption of 

residential buildings to obtain data about energy use during Covid pandemic 

conditions and in the home office setting. In order to construct the case study, the 

thesis examines TUIK household data. Various occupancy, equipment, and lighting 

schedules are produced for the primary four types of households. As a result, the 

thesis incorporates the occupancy, equipment, and lighting schedules into 

simulations to observe their effect on the predicted energy consumption of different 

households in post-pandemic conditions. 

                                                 

 

13 Yixing Chen, Xin Liang, Tianzhen Hong, and Xuan Luo, “Simulation and Visualization of 

Energy-Related Occupant Behavior in Office Buildings,” Building Simulation 10, no. 6 (2017): 1, 

https://doi.org/10.1007/s12273-017-0355-2. 
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1.2 Research Questions 

The study aims to explore the effect of occupancy, equipment, and lighting schedules 

produced in reference to the occupancy data and different household typologies on 

building performance simulations. In this context, this thesis addresses the following 

research questions. 

 To what extent has the occupants’ post-pandemic daily routines changed the 

energy consumption of residential buildings? 

o How did post-pandemic conditions change the energy-related 

routines of the occupants? 

o How does the size of the dwellings affect the energy consumption per 

area? 

o How does the number of household members affect the energy 

consumption per person? 

o What is the relationship between heating, appliance, and lighting 

energy use according to the type of household? 

o How did teleworking and distance education influence the energy 

consumption in dwellings? 

o How can the role of occupant behavior in energy consumption be 

understood by evaluating the specific household types and building 

characteristics? 

1.3 Structure of the Thesis 

The thesis is composed of five main chapters. The current introduction chapter 

briefly explains the problems, aim, and motivation of the study together with the 

research questions.  

Chapter two represents the literature review of the research. In order to better 

understand the importance of the study; energy use in the building sector, building 

performance simulation, predicted and measured energy use, and energy-related 
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human-building interaction are explained with references to the literature. The 

chapter also represents the effects of the Covid-19 pandemic in energy use behaviors 

and indoor usage habits by the studies in the literature. The current condition of daily 

residential life is depicted according to post-pandemic conditions. 

 Chapter three describes the main driver of the study. The chapter starts with the 

definition of occupancy and occupancy behaviors and explains the 

multidisciplinarity of the subject. The data collection methods and types of the 

occupancy schedules are represented in the second part of chapter three. The 

simulation of the occupancy schedules, techniques, integration with building 

performance simulations, and limitations are described in the final section.  

Chapter four includes the case studies for the research. The Turkish Statistical 

Institute (TUIK) household study is analyzed for the determining of the household 

types. The selection of the focus group and the methodology of the study are 

reviewed at the beginning of the chapter. Focus group interview content and 

accordingly the process of formation of the schedules are explained in detail. The 

main part of the chapter four clarifies the four household case studies. Finally, the 

chapter expounds on the results of the performance simulations of the case studies. 

Firstly, heating, appliance, and lighting energy use data for each case is discussed 

through the graphs. Then, the comparative analysis is made between household cases, 

and the research questions are revisited in order to evaluate the results. 

Finally, in the last chapter, the study is concluded with an evaluation. The outcomes 

of the research are mentioned. Limitation of the study and the future suggestions are 

represented to demonstrate the potential of study in the final part of the chapter and 

the thesis.
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CHAPTER 2  

2 LITERATURE REVIEW 

2.1 Energy Use in Building Sector 

People spend a significant part of their lives indoors depending on mechanical 

ventilation, heating systems, appliances, and lightings, and thereby buildings are one 

of the most important end-use industry. In the European Union (E.U.) and the United 

States (U.S.), over 20% of overall energy consumption is consumed by buildings.14 

Between 1980 and 2010, the ratio of building energy consumption to total energy 

consumption increased from 33.7% to 41.1% in the U.S.15 There are several reasons 

behind this increase; population growth, global warming, request for better quality 

interior environments, a growing number of single-person livings and increase the 

use of indoors.16 Also, the growing use of electrical appliances may be one of the 

reasons. However, according to researches, energy consumption is not significantly 

affected due to the increasing efficiency of these appliances.  

Residential buildings account for almost two-thirds of all building energy use.17 In 

the residential sector, space heating is the most significant end-use with 67%, 

followed by water heating with 13%, electrical appliances with 11%, cooking with 

6%, and lighting with 2%. The minor portion belongs to cooling (air conditioning) 

                                                 

 

14 Yan, Hong, Dong, Mahdavi, et al., “IEA EBC Annex 66: Definition and Simulation of Occupant 

Behavior in Buildings.” 
15 Xiaodong Cao, Xilei Dai, and Junjie Liu, “Building Energy-Consumption Status Worldwide and 

the State-of-the-Art Technologies for Zero-Energy Buildings during the Past Decade,” Energy and 

Buildings 128, no. 2012 (2016): 198–213, https://doi.org/10.1016/j.enbuild.2016.06.089. 
16 Ibid. 
17 Bosseboeuf et al., “Energy Efficiency Trends and Policies in the Household and Tertiary 

Sectors,” no. June (2015): 97. 
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with %0.5.18 Space heating and cooling is the most dominating energy end-use in the 

services sector, after electrical appliances, water heating, and lighting.19 

Kavousian, Rajagopaj and Fischer classify the variables that affect energy 

consumption into four categories. 20 The first one is external conditions that express 

the location of the residence and the weather conditions. The location information 

clarifies about 46% variability in consumption. The second category is physical 

characteristics of dwelling that include size and age of the residence, type of building 

(apartment, detached house, etc.), and ownership status (rented or owned). The size 

of the house is the most important aspect among the building characteristics. Thirdly, 

appliance and electronics stock is another group that affects energy consumption. 

Refrigerators and air conditioners are the most energy-intensive equipment in the 

houses. The last category is occupants that influence consumption with occupancy 

level, occupant behavior and occupant socio-economic status. Occupant age shows 

a relationship with energy consumption. Occupants older than 55 are more conscious 

about energy usage, and occupants between 19 and 35 are mostly employees and not 

using the house during day time. Therefore these groups are the least energy 

consumers. In general, families with children who work full-time and have a high 

level of education are more efficient than families without children or families with 

retirees or unemployed members.21 Overall, external conditions and building 

physical characteristics have a greater impact on residential energy use than other 

factors such as occupants. Similarly, research on Dutch housing shows that building 

                                                 

 

18 Ibid. 
19 Cao, Dai, and Liu, “Building Energy-Consumption Status Worldwide and the State-of-the-Art 

Technologies for Zero-Energy Buildings during the Past Decade.” 
20 Amir Kavousian, Ram Rajagopal, and Martin Fischer, “Determinants of Residential Electricity 

Consumption: Using Smart Meter Data to Examine the Effect of Climate, Building Characteristics, 

Appliance Stock, and Occupants’ Behavior,” Energy 55 (2013): 184–94, 

https://doi.org/10.1016/j.energy.2013.03.086. 
21 Amir Kavousian, Ram Rajagopal, and Martin Fischer, “Ranking Appliance Energy Efficiency in 

Households: Utilizing Smart Meter Data and Energy Efficiency Frontiers to Estimate and Identify 

the Determinants of Appliance Energy Efficiency in Residential Buildings,” Energy and Buildings 

99 (2015): 220–30, https://doi.org/10.1016/j.enbuild.2015.03.052. 
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characteristics account for 42% of the variation in energy use, while tenant behavior 

accounts for 4.2%.22 

After the global oil crisis in the 70's, many countries started to establish energy 

efficiency measures. Efficiency is defined as "doing more using less"23 and has 

become even more critical with climate change. Since the buildings are the major 

energy consumers in all sectors, adequately designed, constructed, and operated 

buildings provide remarkable energy savings. Since 2000, space heating energy use 

has reduced in the most E.U. countries in consequence of developments in energy 

efficiency.24  

 

Figure 2.1 Space Heating Energy Usage per m² in E.U. Countries25 

Existing buildings constitute a large portion of the built environment in E.U. Energy 

saving in space heating through improvements in building envelopes and heating 

equipment is a priority for existing buildings, especially in the residential sector.26 

                                                 

 

22 Olivia Guerra Santin, Laure Itard, and Henk Visscher, “The Effect of Occupancy and Building 

Characteristics on Energy Use for Space and Water Heating in Dutch Residential Stock,” Energy 

and Buildings 41, no. 11 (2009): 1223–32, https://doi.org/10.1016/j.enbuild.2009.07.002. 
23 Kavousian, Rajagopal, and Fischer, “Ranking Appliance Energy Efficiency in Households: 

Utilizing Smart Meter Data and Energy Efficiency Frontiers to Estimate and Identify the 

Determinants of Appliance Energy Efficiency in Residential Buildings.” 
24 Cao, Dai, and Liu, “Building Energy-Consumption Status Worldwide and the State-of-the-Art 

Technologies for Zero-Energy Buildings during the Past Decade.” 
25 Ibid. 
26 Ibid. 
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New buildings theoretically consume 40% less energy than buildings constructed 

before 1990, according to building regulations.27 However, these new buildings 

generate only 23% of the total built environment in E.U. and remain a limited portion 

of the stock. For countries having a significant number of new construction and rapid 

urbanization, it is more efficient to improve energy efficiency in new construction.28 

There are some methods that can be adapted to daily life to increase energy 

efficiency. The most effective change is using energy from renewable sources for 

space and water heating. Similarly, wall insulation, efficient light bulbs, double panel 

windows, and heater timers lead to higher efficiency. Owned dwellings are 

commonly more efficient since the investment in energy-saving features (wall 

insulation, heater timers, etc.) Occupied houses during the day represent less 

efficiency due to the increased use of appliances.29 People must become conscious 

of their energy consumption and be informed about the outcome to modify their 

energy behavior.30 Architects are responsible for developing holistic design 

strategies for the energy-efficient living. Various elements should be considered 

while developing design strategies, including local site and climate conditions, 

building types, energy costs, projected climate change tendency, system functioning, 

and techno-economics.31 Overall, it is a complicated issue that addresses both energy 

and cost efficiency, as well as being environmentally friendly and energy balanced 

while also offering a comfortable living environment. 

                                                 

 

27 Bosseboeuf et al., “Energy Efficiency Trends and Policies in the Household and Tertiary 

Sectors.” 
28 Ibid. 
29 Kavousian, Rajagopal, and Fischer, “Ranking Appliance Energy Efficiency in Households: 

Utilizing Smart Meter Data and Energy Efficiency Frontiers to Estimate and Identify the 

Determinants of Appliance Energy Efficiency in Residential Buildings.” 
30 Bosseboeuf et al., “Energy Efficiency Trends and Policies in the Household and Tertiary 

Sectors.” 
31 Cao, Dai, and Liu, “Building Energy-Consumption Status Worldwide and the State-of-the-Art 

Technologies for Zero-Energy Buildings during the Past Decade.” 
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2.2 Building Performance Simulation 

In recent times, green buildings have become popular with increasing attention to 

environmental awareness and sustainable design developments. The energy needs of 

building energy systems such as building space, HVAC systems, and lighting 

systems directly impact the operating expenses and an indirect impact on the 

environment.32 Since the buildings are responsible for a considerable amount of 

energy usage in all sectors, it is necessary to develop strategies to reduce energy 

consumption and support sustainability within a building. As a result, building 

performance simulations (BPS) not only reveals interactions between the building 

and its inhabitants, HVAC systems, and the outdoor temperature, but it is also used 

in architectural design to produce ecologically responsible design solutions.33  

Energy efficiency in buildings requires the integrity of multiple disciplines, such as 

architecture, civil, mechanical, and electrical engineering.34  Building performance 

simulation is the expected value to evaluate the efficiency of buildings for these 

disciplines. The complexity of the simulation programs has created difficulties for 

architects to use until the last decades. User-friendly interfaces emerged with the 

increase in the variety of the BPS programs, and architects have been involved in 

energy simulation processes. For instance, current development on EnergyPlus (a 

BPS program) interfaces is encouraging, and it is expected that appropriate ease of 

use and functionality will be available in the near future.35 User-friendly interfaces 

do not make energy analysis accessible to everyone; knowledge of program 

                                                 

 

32 V S K V Harish and Arun Kumar, “A Review on Modeling and Simulation of Building Energy 

Systems,” Renewable and Sustainable Energy Reviews 56 (2016): 1272–92, 

https://doi.org/10.1016/j.rser.2015.12.040. 
33 Clarke and Hensen, “Integrated Building Performance Simulation: Progress, Prospects and 

Requirements.” 
34 Kristoffer Negendahl, “Building Performance Simulation in the Early Design Stage: An 

Introduction to Integrated Dynamic Models,” Automation in Construction 54 (2015): 39–53, 

https://doi.org/10.1016/j.autcon.2015.03.002. 
35 Fischer, “Building Energy Performance Simulation Tools - a Life-Cycle and Interoperable 

Perspective.” 
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restrictions and awareness of thermal processes are required for the generation and 

interpretation of realistic and credible simulation results.36 Clarke and Hansen 

summarize the developments in BPS as follow: 

"In the early days of building performance simulation, users were likely to be 

building physicists or building services engineers concerned to evaluate the 

impact of a limited number of energy efficiency measures and/or size HVAC 

equipment. Contemporary BPS application is driven by concerns such as 

energy demand reduction, climate change mitigation, environmental 

protection, fossil fuel replacement, security of supply and improved living 

standards. This situation has given rise to several distinct needs: support for 

diverse user types and applications; upward and downward extension of the 

application scale; the linking of energy, environment, wellbeing and 

productivity; the imposition of uncertainty and risk; consideration of life 

cycle performance; support for both design and policy objectives; and the 

addition of new technical domains such as micro-generation, micro-grids and 

demand management/response. In short, BPS has become much more than a 

building design support tool."37 

Energy performance simulation programs are valuable tools for analyzing a 

building's energy performance, indoor environmental quality, and thermal comfort 

during its life cycle. There are various BPS tools available today, and they differ in 

many respects, including their thermodynamic models, graphical user interfaces, 

life-cycle applicability, the purpose of usage, and the capacity to interchange data 

with other software programs.38 Current developments in computing power, 
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algorithms, and physical data enable the simulation of physical processes at various 

degrees of detail and time spans.39  

Building performance simulation is not an easy task since it is affected by several 

parameters related to the building characteristics, HVAC systems, weather, 

occupants, internal loads, operating strategies and schedules, and simulation specific 

parameters (Figure 2.2 and 2.3).40 There is some significant factor that affects the 

precision of BPS results, such as; using the proper simulation engine according to 

the user's experience, the proper hardware system to run the simulation, and the 

suitable level of modeling. Also, an accurate simulation depends on the quantity and 

quality of input parameters as much as a precise building model. The engine 

performs a simulation using the input files, and as a consequence, it produces its 

output to one or maybe more output files. While the output files include simulation 

results, they also contain data about the simulation run,  warnings, or supplementary 

information for evaluating the input.41 The simulation result is a simplification of 

reality and a method of calculating the approximate value of building performance. 

 

Figure 2.2 Interacting Actors in a Building42 

                                                 

 

39 Jan L. M. Hensen, “Towards More Effective Use of Building Energy Performance Simulation in 

Design Center for Buildings and Systems,” Developments in Design & Decision Support Systems in 

Architecture and Urban Planning, no. Kusuda 2001 (2004): 291–306. 
40 Fischer, “Building Energy Performance Simulation Tools - a Life-Cycle and Interoperable 

Perspective.” 
41 Ibid. 
42 Ibid. 
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Figure 2.3 Building Simulation Parameters43 

Although simulation has become commonly used in building design, it does not 

originate design solutions directly. Rather than, it produces feedback about the 

performance of the design option, and it assists user comprehension of complicated 

systems.44 In today's design projects, the principal uses of building simulation are 

analytical rather than design-oriented. 

Integration of BPS tool to architectural design developed after a number of 

experiences. Initially, the final building design simulated to decide which building 

energy systems and sizes will be used. Since this simulation only represents 

analytical information about building performance, it did not support any other 

design alternatives. Despite the fact that, design decisions have a major effect in the 

early design stages, BPS was seldom utilized to support the tasks during the early 

design process.45 In order to increase the utilization of building performance 

modeling during the early design phase, developers investigated new, advanced 

models and applications that satisfy the demands of the architectural, engineering, 

and construction sectors. The production and selection of design choices during the 

                                                 

 

43 Ibid. 
44 Clarke and Hensen, “Integrated Building Performance Simulation: Progress, Prospects and 

Requirements.” 
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early design stages have a significant influence and effect throughout the building 

life cycle.46 

 

Figure 2.4 Expanding the Scope of BPS47 

However, recent advancements determine a larger use of BPS throughout all phases 

of a building's life cycle. Integration BPS to each step of building design, 

construction, and usage generate a wider range of alternates. Rather than projecting 

absolute energy consumption levels, the strength of performance modeling 

nowadays is the comparison of several design choices.48 In general, BPS improves 

comprehension of how a given building performs according to specified criteria and 

allows for comparisons of several design choices.49 
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2.3 Predicted and Measured Energy Use 

Energy efficiency is a significant and current concept in the construction industry. 

Buildings that are more energy efficient are becoming increasingly desirable. 

Consequently, it has become essential to ensure that the energy performance 

estimation at the design stage is achieved while the building is in operation.50 The 

difference between the predicted and measured performance of the building is 

defined as a performance gap. Although the performance gap mostly refers to energy 

consumption, there are other discrepancies between predicted and measured 

performance, such as indoor air quality, lighting levels, acoustic performance, and 

thermal comfort. Researches show that the actual energy consumption can be up to 

2.5 times the calculated energy consumption.51 

The performance gap terms firstly appeared in the mid-1990s to discuss the 

discrepancies between predicting and measuring a building's energy performance, 

including sub-systems, occupancy behavior, climate and weather variables, and 

control settings.52 Since then, it has been a current research subject due to 

uncertainties multiplicity of parameters. 

De Wilde explains the type of performance gap in the literature into three groups. 

The first type is the difference between the predicted and the measured building 

performance that is commonly accepted as the definition of the performance gap in 

the literature. The second type of gap is the difference between machine learning and 

                                                 

 

50 Anna Carolina Menezes, Andrew Cripps, Dino Bouchlaghem, and Richard Buswell, “Predicted 

vs. Actual Energy Performance of Non-Domestic Buildings: Using Post-Occupancy Evaluation 

Data to Reduce the Performance Gap,” Applied Energy 97 (2012): 355–64, 
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51 Pieter De Wilde, “The Gap between Predicted and Measured Energy Performance of Buildings: A 

Framework for Investigation,” Automation in Construction 41 (2014): 40–49, 
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52 Ibid. 
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calculated performance. The last type is the difference between the predicted 

performance and regulatory certificates.53 

The main reason for the performance gap is the selected method and parameters of 

the energy consumption calculations. The building performance simulations contain 

multiple input parameters. Defining the reason for the performance gap is compelling 

since all parameters are processed at the same time. Some of these parameters are 

nonmeasurable in the design stage, such as occupancy behavior, equipment schedule, 

and lighting level. It is commonly accepted that variances in occupancy behavior 

cause discrepancies in predicted performance. Different user behavior can create a 

12% variation from predicted energy usage.54 Numerical simulation errors also affect 

the performance gap, although to a minor extent. 

The demand by regulations to produce more energy efficient buildings causes 

optimistic predictions. 80% of the simulations are only utilized to gain green building 

certification.55 Consequently, the regulation about certification promotes the 

performance gap. 

De Wilde categorizes the causes for the performance gap into three groups. The first 

cause belongs to the design phase, the second cause is grounded in the construction 

phase, and the last cause is engaged in the operational phase.56 Uncertainties in the 

design stage are one of the main reasons for the performance gap. The expected 

performance targets should be clarified together with the client and design team. 

Although the architect ensures the performance targets, lack of attention to 

buildability, simplicity, sequencing of the construction process, or lack of 

appropriate detail could cause the performance gap. The calculation of performance 
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in simulations requires evaluating various parameters during the design process; 

consequently, this creates another layer of complexity in the design phase. Even 

though the model is accurately and consistently constructed in simulations, the 

analyst capability still might engender the performance gap. The variation in weather 

conditions, occupancy behavior, appliance schedule, and internal heat gain create 

uncertainty during the design stage.57 The second group for causes in performance 

gap arises in the construction phase. The specification is the determiner for the 

quality of material and techniques in building. Building quality is usually not 

adequate to specification, especially in terms of insulation and airtightness. 

Unspecified details generate a risk for thermal bridges that affect the performance of 

the building. Due to construction containing many layers in itself, it is difficult to 

determine which layer is inappropriate to the specifications. Currently, there is a 

concern about proper testing to assess the performance of new structures once they 

are in use.58 The final stage for the performance gap is the operational phase. 

Occupant behavior frequently differs from the predictions established during the 

design stage that influence appliance loads and internal gain values. As mentioned 

previously, this is generally considered the primary cause of the performance gap. 

Also, technological progress affects building performance. IT related appliances 

usually require more electricity than predicted.59 

The primary reasons for the performance gap might emerge in the design stage as 

well as construction and operation stages. Improving management of the building 

design, construction, and operation processes can minimize errors during each 

process. All professions engaged in a construction project, such as architects, 
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engineers, clients, consultants, builders, and facility managers, should work together 

to bridge the performance gap.60  

Bridging the performance gap is significant in order to generate buildings that are 

resilient to change, perform well over time, and that are designed to respond to the 

changing condition of occupancy and climate. Model affirmation, advanced data set 

for predictions, updating industry practice, and better forecasting are the fundamental 

approaches that bridge the performance gap.61  

 

Figure 2.5 Comparision of Predicted and Actual Electricity Consumption62 

It is challenging to obtain an accurate depiction of actual building operations due to 

the complexity of the built environment and the independent parameters. In reality, 

many of these parameters are either unattainable or unmeasurable. Building 

performance model calibration evaluates simulation outputs with the measured data 
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to decrease the discrepancies between predicted and actual data. Consequently, the 

calibration increases the efficiency and reliability of predicted outcomes.63  

Menezes et al. compared five different predicted electricity models with actual 

electricity consumptions of an office building in London in Figure 2.5. Variables of 

the models are lighting, occupancy and appliance, and cooking schedules. In 

predicted model 1, the lighting schedule is derived from design specification, and 

SBEM (Simplified Building Energy Model) standard occupancy schedule is used as 

input. Appliance and cooking loads are ignored. The simulation result is 1/3 of the 

actual consumption. Model 2 also includes the consumption of the appliances in 

simulation; as a result, predicted consumption is doubled. Model 3 is calibrated in 

terms of lighting and appliances. Measured data replaced with predicted, and results 

show that actual lighting load is higher and appliance load is lower than expected. In 

predicted model 4, lighting, appliances, and cooking loads are replaced with 

advanced measured data. Consumption increased by almost 15% in the total 

electricity consumption. Lastly, in model 5, actual occupancy load is used in 

simulation instead of the SBEM model. Consequently, the predicted electricity usage 

is within 3% of the actual use of the building when it was in use.64 

2.4 Energy Related Human-Building Interaction 

One of the fundamental purposes of buildings is creating comfortable environments 

for humans. Occupants interact with the building and its elements to ensure their 

comfort needs, and this cooperation is defined as the human-building interaction 
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(HBI) in the literature. Bill Hiller introduces the HBI in his book "Space is the 

Machine": 

"Built environments are a construction of physical elements that create and 

protect a space. Each of these two aspects, the physical and the spatial, carry 

a social value: the former by the shaping and decoration of elements (with 

functional or cultural significance), and the latter by providing spatial 

patterning of activities and relationships. Designing Human-Building 

Interaction, in that perspective, consists of providing interactive opportunities 

for the people to shape the physical, spatial, and social impacts of their built 

environment."65 

Although the interaction is gathered under three topics (physical, spatial, and social), 

they are also interconnected. For instance, the decision of turning on lighting to 

provide visual comfort in a shared space includes physical interaction as well as 

social interaction for the occupants in the same space. Research has found individual 

thermoregulation variances among individuals. Due to individualized comfort 

requests, HBI has become more significant in current designs.66 While HBI provides 

individual control over building systems, having this control as an individual has 

value by itself.67 

Occupant behaviors affect building performance and indoor environmental quality 

through HBI. Occupants interact with the building control systems by changing 

thermostat set point, lighting on/of control, window open/close control, HVAC 
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on/off control, and pulling up/down blinds to provide thermal comfort in an indoor 

space.68 For example, opening or closing the window generates the possibility to 

control temperature, light, air quality, acoustics, privacy, and social connections 

between inside and outside.69 A sophisticated HBI system improves occupant 

productivity, comfort, and health while reducing energy consumption in buildings. 

Hong et al. study the most influential factors that affect the HBI behaviors of 

occupants. According to the research, the three most significant aspects that 

determine HBI behaviors are the country, control feature accessibility, and group 

dynamics.70 In addition to these three aspects,  gender and age are among the factors 

influencing HBI. 

The study shows that only behavioral differences can reduce energy usage between 

9 and 18% in an office building.71 Predicting the behavioral factor in the design stage 

increase the reliability of performance calculations. However, behavior models are 

based on the simplification of reality. Stochastic nature of human results models that 

are far from realistic behaviors.72 When an uncomfortably or a need for privacy 

occurs, there are multiple behavioral acts to optimize the local environment. 

Discomfort caused by warm indoor can be relieved by the opening window to reduce 

room temperature, closing blinds to decrease internal radiation, switching on AC to 

increase air movement, or adapting clothing level to feel comfortable.73 All of these 
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behaviors have an impact on building energy usage and must be evaluated in order 

to optimize the performance of buildings.  

2.5 Behavioral Pattern of Covid-19 

The World Health Organization announced that Coranavirus disease (Covid-19) is a 

global pandemic in March 2020.74 Researchers have increasingly started to analyze 

the impact of the Covid-19 pandemic on health, economy, and social well-being. The 

pandemic conditions have changed the lifestyle and daily habits of the people. Many 

countries imposed extremely stringent lockdown restrictions for a period of time in 

2020, and it has been suggested to stay at home as possible. The lockdowns change 

the occupancy schedules of the residential and non-residential buildings due to the 

shift in time spent in the houses. The dwellings become the center of daily life; "an 

office for those teleworking, a nursery or classroom for children and pupils, and a 

hub for online shopping or downloading entertainment for many."75 As a result, 

people use computers, laptops, lighting, and other appliances at home that would 

typically have been used in their offices and schools. Furthermore, the limited 

availability of outdoor entertainment activities leads people to seek alternatives in 

their homes, often resulting in a significant increase in energy consumption.76 

Consequently, building energy consumption is directly affected by the pandemic 

occupancy schedules. 
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Besides stresses inherent in the illness itself, surveys have shown that more people 

suffered from depressive symptoms during Covid-19 lockdowns due to the effect of 

home confinement on mental and psychological health.77 "Simultaneously, the fear 

and uncertainty instilled by the perceived health risk and economic ramifications of 

the pandemic have increased insomnia, anxiety, depression, and suicide rates."78 In 

order to overcome the negative effect of the Covid-19, people satisfy their 

entertainment needs at home by owning new technological appliances, kitchen and 

cooking equipment.  

Since the production sector stopped due to Covid-19, global energy needs decreased 

by 3.8% in the first quarter of 2020. However, the energy demand in the residential 

sector increased in the same period of time. 79 According to the research, energy 

consumption in all sectors decreased in Spain by 13.5% and in Italy by 37% during 

the Covid-19 lockdown in 2020 compared to 2019.80 Although the total energy 

consumption has been reduced at the national level, energy use in residences has 

increased during the Covid-19. During the lockdown, households raised their 

consumption by an average of 13%.81 The impact of lockdown on energy use 

changes according to month, season, and day types. 

The primary energy in houses is used for heating and cooling, appliances, lighting, 

and cooking. Occupants are generating internal load with their presence and cause 
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great energy consumption with the use of home appliances and lighting.82 The 

pattern of energy consumption in dwellings changed during the Covid-19 pandemic. 

The remarkable difference is that "consumption occurred throughout the day instead 

of being concentrated in the evening as observed before the lockdown."83 A clear 

distinction between weekend and weekday profiles can be observed before the 

lockdown period. For the weekdays, occupants consume energy in the early morning 

due to working and schooling commitments, and the consumption increases during 

the evening since occupants return to the house. However, the day pattern is not 

different for weekdays and weekends in the lockdown period. The morning peak is 

disappeared due to remote working, and energy use gradually rises until noon. A 

prolonged peak can be observed during the evening due to the use of lighting.84 The 

most significant result of the pandemic energy consumption studies is the similarities 

between pre-pandemic and post-pandemic energy use profiles during the day. 

Although the daily consumption amount is increases between 16.3 to 29.1%, the 

daily patterns are similar to each other.85 

The energy consumption ratio in the lockdown period differs for each residence due 

to the differences between households. The socio-economical factors, such as age 

and employment status, originate the variation in energy usage. A study claims that 

there is "a negative correlation between the age of residents and energy consumption 
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in homes, i.e., that older residents show a more favorable pattern of behavior 

compared to the younger ones."86 

Some of the consequences of the pandemic may persist for an extended period of 

time. Although the re-opening period is completed and the influence of the Covid-

19 on daily life is minimized, the long-term effects on behavioral patterns can be 

observed in society. People mostly tend to spend their time in homes, socializing in 

open-air spaces, cooking their own foods, entertaining at home and others. As a 

result, the effects of the pandemic on buildings may generate renewed understanding 

of architecture and environmental systems to meet the new behavioral pattern. This 

study does not focus especially on the strict lockdown period of Covid-19; instead, 

it analyzes the long term effect of the Covid-19 and quantifies the impacts of 

lockdown on households. The aim is to investigate the changes in a household's 

energy consumption pattern during the post-pandemic process and represent possible 

future scenarios with teleworking and distance education. 

With the increased environment of the new teleworking and distance education, it 

has become crucial to reconsider the design and operation of buildings. As 

functionality and technology need changes in buildings, it is critical to ensure that 

buildings can be inconstantly adapted to these circumstances without negatively 

affecting occupant well-being.87 
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CHAPTER 3  

3 OCCUPANCY BEHAVIORS 

3.1 Definition of Occupancy Behavior 

Occupants interact with the building and building control systems in order to satisfy 

their comfort needs by opening and closing windows, turning on/off lights, adjusting 

the thermostat set point, pulling up/down blinds, turning on/off AC, and moving in 

the building. The principles of perceived comfort, productivity, control of 

environmental systems, and satisfaction are the reasons behind the occupant 

behaviors. The interaction between occupants and building is a double-sided 

relation. They are the actors affected by the interior environment and also who are 

adjusting the control systems and change the indoor conditions. The unpredicted 

interaction between occupants and control systems affects the operation of buildings, 

thus building performance and indoor environmental quality are influenced. It is a 

challenging procedure to predict the occupant behavior before the building is 

populated, even though some estimated behaviors are considered in the early design 

stages. To address the rising demand for more sustainable buildings, 

sophisticated knowledge of the effects of occupancy on building energy 

performance is required. 88 However, the impact of occupant behavior and diversity 

is generally ignored or simplified in the design and construction stages of a building. 

The simplistic representation of occupants as passive and static individuals reduces 
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the accuracy of building performance evaluation and building operation 

procedures.89 

As previously mentioned, IEA indicates occupant activities and behavior as one of 

the six fundamental factors that affect building energy consumption in Annex 53.90 

According to Hong and Lin, even in the same climate and the same functioning 

buildings' measured energy results demonstrate significant inconsistencies due to 

occupancy diversity.91 The energy consumption of a building is directly related to 

the occupant in the space. Studies that ignore occupant behavior are difficult to 

achieve reliable results.92 

 

Figure 3.1 Connections of Occupancts with Builiding Systems93 
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Figure 3.1 shows the relationship between buildings and occupants. There are 

external and internal factors that influence occupancy behavior. Climate, culture, and 

economy are examples of external impact factors. On the other hand, physiology, 

psychology, and personal comfort needs are the internal impact factors of occupancy. 

Occupant behaviors affect relations with control systems, which also influences 

building operations. Thus energy consumption and indoor comfort establish a 

closed-loop.94 

3.1.1 Occupancy Behavior Measurements 

Occupancy can be categorized into two; the first is the presence and movement in a 

building, and the second is the interaction between building systems, appliances, 

lighting, and others. Occupants' presence impacts heat and humidity production, 

carbon dioxide emission. However, occupant interaction influence the building 

performance with adaptive and non-adaptive behaviors.95 The adaptive behaviors 

represent the adjustments that increase the occupant's thermal, visual and acoustic 

comforts. The non-adaptive behaviors are not directly related or aim to physical 

comfort, though they are primarily motivated by environmental factors. They are 

driven by the idea of saving energy, increasing their views of the outside 

environment, or completing a duty.96 Table 3.2.1 clarifies and exemplifies the 

particular behavior measurements. 
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Table 3.1 Occupancy Model Measurements 

Adaptive Behaviors Non-Adaptive 

Behaviors 

Occupancy Model 

 

Occupant actions to restore 

occupant comfort 

 

 

Occupant action driven 

by contextual factors 

 

- 

Light switch control Light switch off at the 

departure 

Presence 

Appliance use Fixed plug-in appliance 

use 

Movement 

Blind control  Blind opening at day 

time 

Arrival / Departure 

pattern 

Thermostat use  Presence duration 

Window control   

Clothing adjustment   

 

The behavior of occupants also is affected by some short-term and long-term 

variables. The current physiological, psychological, or economic conditions of 

occupants can be considered as short-term variables that affect energy consumption. 

Long-term factors can be examplified as culture, sex, comfort, income status, age, 

and profession.97 
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3.1.2 Multidisciplinarity in the Occupancy Behavior  

Occupant behavior is a multidisciplinary research topic related to social and 

behavioral science, building science, sensing and control technologies, computing 

science, and data science. Analyzing user behaviors increases the possibility of 

providing occupant comfort and, as a result, increases the energy efficiency in 

buildings.98  

Multiple actors engage with the design, construction, operation phases of a building. 

Each actor has a responsibility and a role in building performance. However, the 

impact of these actors on building energy consumption cannot be predicted in 

advance. The uncertainty that occurred from the agents results in discrepancies 

between predicted and actual building energy performance.99 D'Oca, Hong, and 

Langevin explain the effect of related disciplines as follow; 

"Building energy modelers focus on comparing design scenarios based on 

performance and accurately predicting building energy consumption; 

building occupants seek improved comfort and productivity; building 

operators seek to minimize daily energy use while maintaining comfort for 

occupants; utilities and policy makers aim to address occupants', operators', 

and managers' energy savings impacts through codes and standard 

regulations; and building vendors seek to develop high-performance products 

that save consumers energy costs with minimal capital investment 

requirements."100 

Annex 66 was introduced by International Energy Agency (IEA) to increase the 

interrelationship of disciplines that have an active role in building performance. As 
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a result, further studies of occupancy and building life cycle with relevant agents 

decrease energy consumption while increasing indoor environmental comfort.101 

3.1.3 Individual Effects on Occupancy Behavior 

Occupancy is a complex subject and requires a multidisciplinary approach to tackle 

with the issue in all its aspects. Occupant behaviors have a dynamic character 

according to external conditions to occupants (such as wind or temperature), the 

internal condition of occupants (culture, age, or gender), and building properties.102 

In order to improve the energy consumption prediction of a building, researchers 

suggest considering sociological, psychological, and economic aspects of 

occupants.103 Although individual physiological and psychological factors are 

studied in many research, there is a significant influence of social context on the 

energy consumption behaviors of occupants. Some of the social and personal 

parameters that affect energy consumption are socio-cultural belonging, gender, age, 

awareness of energy issues, employment, income, and education level.104 

Cultural differences may result in different occupancy schedules that consequently 

change the energy use pattern. Shan Hu et al. has exemplified the culture effect as; 

“Every day at about 12:00 (noon) in Japan, electricity demand falls more than 

6GW and then returns to the pre-lunch trend at 13:00. This phenomenon 

appears because the Japanese lunch hour is strongly concentrated between 

12:00 and 13:00, where Japanese office workers traditionally switch off 
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lights, equipment and sometimes even air conditioning before leaving their 

workspace. However, this phenomenon does not appear in major North 

American or European load shapes due to different office occupancy and 

appliance use behaviors.”105 

Different user groups not only define the energy usage pattern but also determine the 

consumption level. According to studies, income level is correlated with the energy 

use of a household. “A 1% increase in income increases the total energy consumption 

by 0.63%.”106 Occupants aged 40 to 50 have the highest demands for comfort and, 

as a result, consume more. Highly educated people have more control and knowledge 

of thermostat usage. The existence of a teenage person in a household affects energy 

use due to the increased use of appliances.107  

There are numerous interrelating factors that affect the energy use behavior of 

occupants. For instance, electricity usage is correlated with income level, income 

level affects building physical conditions, physical condition changes the building 

energy consumption. Each factor correlated with the other.  Interactions between 

human and building systems are only one feature of occupant behavior. Occupant 

behaviors can be explained with a combination of prementioned social features and 

different disciplines.108 
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3.2 Modeling of Occupancy Behavior 

A valuable occupancy model represent collected data properly and explains 

comprehensive data. To determine the collection of predictor variables that form the 

advanced model, a model selection technique is used.109 The modeling of occupancy 

behavior is the process of collecting the relevant data and generating a systematic 

representation with mathematical methodologies. There are various modeling 

approaches in the literature (such as linear models, mixed-effects models, Markov 

chains, and Bayesian networks) to produce different presence, movement, and action 

models. In IEA EBC Annex 66, five behavior models and their modeling approaches 

are analyzed in the occupancy studies. According to the study, window opening 

behavior is the most extensive model, followed by window shading arrangement, 

light switch use, thermostat adjustment, and appliance use models.110 

Numerous models are produced for a large number of behaviors with greater input 

complexity. The complexity of the model fundamentally depends on the quality of 

the input variables, the size of the research environment, and the significance of the 

occupancy for the study. A significant number of variables need to be integrated to 

the occupancy model for a large scale (urban scale), correspondingly the complexity 

of the model increases and the reliability of the model becomes questionable.111 The 

correlation between the complexity of occupancy models and model detail is 

inversely proportional. 

Gaetani, Hoes, and Hensen groups occupancy models into five; schedules, 

deterministic rules, non-probabilistic models, probabilistic/stochastic models, and 

agent-based stochastic models. Schedules and deterministic models are available in 
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BPS tools and represent fundamental scenarios about building operation. The last 

three model types are explained by the authors; 

"As briefly stated above, three main categories are identified: non-

probabilistic models, which mainly include diversity factors resulting from 

data-mining; probabilistic or stochastic models, which represent the majority 

of the considered publications and rely on Logit analysis, Probit analysis, 

Markov chain processes, Poisson processes, and survival analysis; agent-

based and object-oriented models, also known as object-based models."112 

Existing occupancy models in the literature are commonly based on specific studies, 

behaviors, and locations. The case specificity and limitation on the standardization 

of the models create difficulties in comparing the accuracy of the behaviors.113  

3.2.1 Data Collection Methods 

Occupant research requires a comprehensive set of occupant-related data to generate 

consistent occupancy models and detailed knowledge about the subject. There are 

various methods for data collection, and each of them has some strengths and 

weaknesses. The first method is the in-situ studies that observe the occupant in their 

daily environment with sensors. The advantages of the method are the long-term 

observation period and distraction-free environment. Researches that is based on the 

natural environment of occupants decrease the possibility of unnatural behavior of 

occupants. However, sensor placement and size of the study group are the 
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disadvantages of in-situ researches.114 Also, privacy issues and the cost of the sensors 

should be considered in these studies. 

The second data collection method is the laboratory studies. Occupants are observed 

in fully equipped environments by experts. The laboratory environments are similar 

to standard indoor spaces, thus the unfamiliarity of space and sense of being observed 

may cause unnatural behaviors. These environments are considerably costly than in-

situ studies due to the quantity and variety of equipments. Nevertheless, laboratory 

studies create the opportunity to observe numerous aspects of occupancy behavior 

with the sophisticated control of indoor environmental conditions.115 

Surveys are the last method that is constitutively based on questionnaires, interviews, 

and self-reporting. This method is cost-effective and may target a comprehensive 

group to observe that is almost impossible with in-situ and laboratory studies. The 

reliability of the data is questionable since limited knowledge of building systems 

and unclear, incorrect and garbled answers of occupants.116 In order to obtain more 

accurate data, a mixed comprising method can be used by evaluating the strengths 

of the mentioned methods. 

3.2.2 Occupancy Schedules 

BPS programs often depict occupant behavior by using a variety of techniques that 

include simplistic or predefined static schedules, as well as predefined settings. 

These schedules are not affected by design and individual differences since the 
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occupants are perceived as passive recipients.117 Static schedules that are the early 

examples of occupancy schedules represent an unrealistic result of energy use 

compared to real life and ignore individual differences and stochastic energy-related 

behaviors of occupants. Deterministic rules can be assigned to the occupancy 

schedules in order to increase the model resolution and the complexity. The 

deterministic rules are applicable "where actions are perceived as direct 

consequences of one or more drivers e.g., variation of indoor temperature or direct 

solar radiation."118 The non-probabilistic models are produced based on a specific 

data set and are considered to include information about environmental triggers.  

The sophisticated and dynamic nature of occupant behaviors leads to studies 

focusing on agent-based and stochastic representation. Actions occur in stochastic 

models based on a probability function as a result of inputs. The behavior is often 

predicted according to the Markov chain model that is based on the likelihood of 

occurring an action in the following time step independently from current 

conditions.119 The accuracy increases by the multiple simulation processes. Although 

some stochastic models are included in performance simulation programs, the tools 

allow defining user-defined schedules independently.120 

"Schedules, deterministic, non-probabilistic, and probabilistic models represent the 

conventional simulation framework"121 compared to agent-based occupancy models. 

Individuals are represented as autonomous agents with personal attributes in agent-
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based occupancy schedules, and their individual variability is considered. Agent-

based schedules introduce the social interactions between agents and their 

surrounding environment. The distribution of stochastic predictions of occupancy 

levels is similar to the actual occupancy level.122  

Building performance simulations commonly operate static schedules due to their 

present and easy access in the simulation programs. However, agent-based 

occupancy schedules represent each occupant as an independent entity with 

stochastic behaviors. Therefore, agent-based schedules enhance the accuracy and 

reliability of the predicted energy use results. 

3.3 Simulation of Occupant Behavior 

The influence of occupant behavior on building energy consumption is a well-known 

fact. Integration of occupancy models with the building performance simulation is a 

must to be able to evaluate the occupancy effect on energy use. In a building 

performance simulation, occupancy schedules imitate real-world occupant 

behaviors, taking into consideration the behavior's effect on thermal aspects and 

energy consumption in the building.123 

There are fundamentally four reasons for occupancy simulations. The most prevalent 

aim is the estimate building energy consumption to determine the control systems of 

the building. Predicting occupant behavior before the building is occupied is the 

second purpose of the simulations. Also, the other aims of the occupancy simulations 

are adjusting building systems depending on human building interaction and 
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evaluating occupancy models based on obtained data.124 The more realistic influence 

of the occupancy on building energy use is obtained by the stochastic behaviors 

simulations rather than fixed occupancy schedules in BPS programs. However, 

implemanting occupancy scheudules to BPS programs require a deep knowledge and 

expertise about the subject.  

There are some key variables that affect the simulation of occupancy behaviors. 

These variables are similar to real-life trigger factors that start or end an comfort 

related action. For instance, entering or leaving a room is a time-related parameter 

for occupancy behavior. Indoor air quality and outdoor temperature can be used as a 

parameter for window opening/closing action. An advanced observation of real-

world data is required to identify trigger variables that may cause actions.125 

3.3.1 Building Performance Simulation Tools and Occupancy Behavior 

Modeling 

According to 95 studies on the occupancy researches in the last 15 years, EnergyPlus 

(43%) is the most common program to represent building performance and human 

building interaction as followed by MATLAB (16%), ESP-r, Modelica, Python, 

TRNSYS, eQuest, AnyLogic, C++, and DeST. In addition to reviewed articles in the 

study, other modeling and simulation tools are also commonly available such as 

DOE-2, WUFI, and IDA.126 The main purposes of the tools are generating a 

standardization of occupant behavior models, improving the reliability and 

consistency of the simulations by integrating occupancy scheduled with BPS, and 

creating realistic occupancy behavior models. In order to achieve advanced 
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simulations, these tools represent the complexity, diversity, and stochasticity of 

occupant behavior in buildings.127 

BPS programs represent occupants as internal heat gain sources similar to 

appliances. Although thermal load accuracy is increased, the action and movement 

of the occupant is ignored in the default schedules. User-defined occupancy 

schedules can be integrated into BPS to define stochastic features to the schedules. 

Researchers have developed particular mathematical functions to update default 

schedules.128 The user-defined schedules create great flexibility to define specific 

rules and schedules for energy simulations. 

There are 52 occupancy behavior models publicly available in the Lawrence 

Berkeley National Laboratory (LBNL) website. These models are produced based 

on real occupancy data and window, blind, light, heating, and AC operations are 

modeled as user-defined schedules.129 The following chapter describes the 

methodology and working principles of these occupancy behavior schedules. 

3.3.2 Integration of Occupancy Behavior Models with Building 

Performance Simulations 

Many of the BPS programs contain occupancy, equipment, and lighting schedules 

that are generally fixed schedules. Energy Plus (EP) is a performance simulation 

tool, and a more user-friendly interface for EP is obtained with the Honeybee, an 

application in the Grasshopper. The existing schedules in the EP represent constant 

values for each week. The schedules can be regenerated by defining some 

                                                 

 

127 Energy in Buildings and Communities Programme (EBC), “Annex 66 Definition and Simulation 

of Occupant Behavior in Buildings Final Report.” 
128 Ouf, O’Brien, and Gunay, “Improving Occupant-Related Features in Building Performance 

Simulation Tools.” 
129 Zsofia Belafi, Tianzhen Hong, Andras Reith, and Building Performance Simulation, “A Library 

of Building Occupant Behaviour Models Represented in a Standardised Schema,” in 4th European 

Conference on Behaviour and Energy Efficiency, 2016. 



 

 

41 

deterministic rules. For instance, natural ventilation patterns can be defined in BPS 

tools with the reference parameter to the indoor air temperature or indoor CO2 

concentration. The non-deterministic models can be integrated with the BPS 

programs by using CSV files that are generated by the real data. 

 

Figure 3.2 Existing Occupancy Schedule in Energy Plus 

Stochastic and agent-based models require advanced knowledge of the BPS tools for 

integrating with the simulation programs. Since there is a great need for 

standardization of occupancy behavior models, researchers have developed obXML 

(occupancy behavior eXtensible Markup Language) based on the DNAS (Drivers, 

Needs, Actions, Systems) framework.130 DNAS framework explained in IEA EBC 

Annex 66 as; 

"Drivers represent the environmental and other context factors that stimulate 

occupants to fulfill a physical, physiological, or psychological need. Needs 

represent the physical and non-physical requirements of occupants that must 

be met to ensure satisfaction with their environment. Actions are the 

interactions with systems or activities that occupants can perform to achieve 

environmental comfort. Systems refer to the equipment or mechanisms 
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within the building that occupants may interact with to restore or maintain 

environmental comfort." 131 

The window opening action based on interior temperature is explained in DNAS 

format as; Driver is the indoor temperature, Need is the thermal comfort, Action is 

open and System is the window.  

 

Figure 3.3 Data Transmission Between obXML, obFMU and Energy Plus132 

Occupant models in obXML format are co-simulated with the obFMU (occupancy 

behavior Functional Mockup Unit) to integrate into BPS programs. The obXML 

defines the variables for the obFMU and obFMU simulate the occupancy behavior 

according to XML file and drivers.133 Figure 3.3 explains the data flow between 

obXML, obFMU, and Energy Plus. 
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3.3.3 Limitations of Simulated Models 

Numerous methodologies and models are produced to understand and decrease the 

gap between simulated and actual building energy use by expressing occupant 

behavior in building performance simulations. IEA EBC Annex 66 collects the 

occupancy related researches under a study to guide the calculation of predicted 

occupancy and internal heat gains of a design instead of the rule-of-thumb of design 

standards.134 However, architects are not fully advanced yet with occupant behaviors' 

environmental and comfort implications. 

Since the influence of occupancy on energy consumption varies according to design 

schema, interior organization, the relation between internal and external thermal 

loads, degree of automation, the choice of occupancy models should correspond to 

building context and features. "Increasing modeling complexity of non-influential 

occupancy behavior aspects does not lead to improved results, but involves an 

unnecessary time expenditure."135 Detailed models with various inputs may result in 

more accurate simulations; nevertheless, determining the degree of details according 

to the intended use of the model provides more efficient results. The best way to 

select the convenient occupancy model is considering the "who,” "what,” "why,” 

"when," and "where" questions for each particular case.136 Accordingly, stochastic 

models do not always exhibit preferable data to deterministic models. 

The occupancy models produced according to real data generally depend on a limited 

observation group and specific building type. The availability of limited occupancy 

data is unreliable due to the lack of demographic variety and condensed data 

collection durations. Therefore, the studies often question the transferability of the 
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of Occupant Behavior in Buildings Final Report,” 104. 
135 Ibid., 103. 
136 Ibid. 
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behavior models based on observation.137 These occupancy models are not 

considered validated according to a limited set of data and can not be applied to all 

building types, locations, and populations. Another limitation of real data is the 

behavioral change of occupants due to being aware of the observation process. 

The limited number of BPS programs support integrating occupancy schedules into 

their layout. This process requires advanced knowledge about the BPS tools. "The 

simulation platforms that permit the incorporation of custom component models (e.g. 

occupant models) in BPS tools are not mature enough to provide a standardized and 

user-friendly interface for the rapid implementation."138 For this reason, the 

widespread use of energy simulations in design processes is limited. 

                                                 

 

137 H. Burak Gunay, William O’Brien, and Ian Beausoleil-Morrison, “Implementation and 

Comparison of Existing Occupant Behaviour Models in EnergyPlus,” Journal of Building 

Performance Simulation 9, no. 6 (2015): 567–88, https://doi.org/10.1080/19401493.2015.1102969. 
138 Ibid., 568. 
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CHAPTER 4  

4 THE CASE STUDIES 

4.1 Household Typologies in Turkey 

Turkish Statistical Institute (TUIK) compiles, evaluates, analyzes, and publishes the 

statistics of the country in the fields of economy, social issues, demography, culture, 

environment, science and technology, and other fields deemed necessary.139 TUIK 

conducted a study on the average household size in 2020. According to the research, 

the current average household is composed of 3.30 occupants.140  

Table 4.1 Number of Households by Size and Type, 2020 

Type of household Number of 

households 

1 2 3 4 5 6+ 

One-person households 4 404 997 100 - - - - - 

One-family households 16 050 444 - 29.3 26.6 26.3 11.7 6.2 

   Couple without children 3 327 655 - 100 - - - - 

   Couple with children 10 341 665 - - 34.6 38.6 17.5 9.3 

   Lone parents with child 2 381 124 - 57.9 28.6 9.4 2.7 1.4 

Extended-family household 3 456 651 - - 13.3 18.9 21.9 46 

Multi-person no-family 

households 

691 994 - 69.6 14.6 6.1 3.8 6 

Total 24 604 086 17.9 21.1 19.6 20 10.8 10.6 

                                                 

 

139 Duties and Authorities. TÜİK. (n.d.). Retrieved January 28, 2022, from 

https://www.tuik.gov.tr/Kurumsal/Gorev_Yetkileri  
140 TUIK, “İstatistiklerle Aile,” no. 37251 (2020): 5–10, 

https://data.tuik.gov.tr/Bulten/Index?p=Istatistiklerle-Aile-2020-37251. 
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According to the data, one-family with two people create the majority of all 

household types with the 4 705 301 households. Predominantly, 71% of this typology 

is composed of the couple without children, and the rest 29% is the lone parent with 

the child. This one-family household type is followed by the residents with one and 

two children owned families. One-person households have increased in 2020 and 

constituted a majority of 18% among all typologies. A defined dominant group of 

extended-family residences is composed of 6 and more households and has a rate of 

46% in this type. Lastly, multi-person no-family households represent the shared 

house typologies and commonly, the residence contains two households that do not 

belong to the family. 

The thesis analyzes the TUIK household data in order to generate the case study 

occupancies. Thus, the study involves the common household types and corresponds 

to the real data in Turkey. 

4.2 Research Method 

The case studies were conducted in five stages. Firstly, four household typologies 

were selected by TUIK household data in order to cover the majority of the society 

in Turkey. Second, the energy-related daily routines of a household were obtained 

by a focus group study composed of selected typologies. Occupancy, appliances, and 

lighting schedules were generated by the result of the focus group study in the third 

stage. After that, building performance simulations were performed in Honeybee and 

Energy Plus, with the schedules based on the daily patterns of occupants. And finally, 

the results of the simulations were analyzed and investigated with the existing 

literature studies to evaluate the accuracy of the study.  
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Figure 4.1 Methodology of Research 

The focus group is composed of the prementioned four selected household 

typologies: one person, couple without a child, couple with two children, and an 

extended family with six members. All residences are located in Ankara, Çankaya 

region. The interview was conducted in a focus group of one member from each 

household on November 2021. In the first phase of the interview, all household 

members' demographic information (e.g., age, gender, education level, income level, 

employment status) was collected. All adults in the study are at least have a 

bachelor's degree and currently belong to the working class, and the income level is 

relatively high. Children and teenagers continue their education, and elderly people 

are retired. 

In the second phase, architectural information about residences was requested. 

Members of one person, a couple with two children, and extended family households 

shared plan layouts and size information by the websites of the residences. And the 

information of the only couple's residence was collected by the author. Height 

information of each residence is expected as the same and 2.70m. According to the 

information collected, all houses are modeled in Rhino by the author.  

In the following stage, possible household appliances and lightings were listed (in 

chapter 4.3), and the focus group determined the existing and used equipments from 
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the list. Since the study aims to make a comparative analysis, the model and energy 

consumption differences are ignored for each type of appliance in itself and excepted 

with an average energy use data in Table 4.3 for the simulations.141 

The final objective of the interviews was the depiction of 24-hour daily life in the 

house on both weekdays and weekends. The significant information of the daily 

routines is the presence of occupants in the dwelling, lighting preferences, and how 

long the occupants used which equipment. The leading questions are; “Is the 

occupant presence in the house?”, “If they present, in which room the occupant is?” 

and “What is he/she doing in that room?” In this stage, the focus group determined 

the usage times for each appliance. The usage time of the equipment that is not used 

every day was equally distributed over the days. For instance, if a washing machine 

is used only on Saturday for two hours, the schedules represent this information as 

one-hour usage for each weekend day. 

The study is purely focusing on occupancy and occupant behavior. Since the 

individual features are correlated with each other, the focus group consisted of 

people with similar demographic features. 

4.3 Developing an Exploratory Analysis to the Residential Energy 

Consumption 

Since the occupant and their behavior are major components of energy consumption 

in the built environment, research on the interaction between the occupant and the 

building is significant for generating new areas of architectural inquiry.142 Analyzing 

occupant characteristics is a productive technique to investigate the impact of 

inhabitants on residential energy usage. Energy-related knowledge on household 

                                                 

 

141 Energy Consumption Information Retrieved January 23,2022 from https://www.samsung.com/tr 

, https://www.siemens-home.bsh-group.com/tr/ and, https://www.philips.com.tr/ 
142 Ebru Ergöz Karahan, Özgür Göçer, Kenan Göçer, and Didem Boyacıo, “An Investigation of 

Occupant Energy-Saving Behavior in Vernacular Houses of Behramkale ( Assos ),” 2021, 1–23. 

https://www.samsung.com/tr
https://www.siemens-home.bsh-group.com/tr/
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types helps to enhance general information on the overall consumption in the 

residential sector.143 

Former studies on the energy usage of the built environment have claimed that the 

major variable for the performance gap is occupancy. Although this is not completely 

irrelevant, most of the current studies have established the existence of many 

influential factors, such as building characteristics, together with occupancy.144 

Heating, appliances, water heating, cooking, and lighting are the main sources of 

energy consumption in a residential building.145 The heating energy need mainly 

depends on the building characteristics rather than the occupancy effect. However, 

the users and the household profile highly affect appliances and lighting. This study 

investigates the impact of different households and resident types on the building 

energy consumption in terms of heating load, equipment load, and lighting load 

during the post-pandemic lifestyle. 

Four types of households in different sizes of houses were simulated and analyzed 

in order to understand the effect of the size of the house and the number of occupants 

in the residential buildings. Houses are mainly composed of living room (LR), 

kitchen (K), bedrooms (BD), bathrooms (BA), corridor (C), and laundry (L). 

Multiple user types are considered according to the post-pandemic work and 

education conditions. 

According to the existing schedules in BPS tools, residential buildings are occupied 

between 5 pm to 8 am. However, this is not the case in real life regardless of Covid-

19. Many possibilities disprove the existing occupancy schedules, such as the 

                                                 

 

143 van den Brom, Meijer, and Visscher, “Performance Gaps in Energy Consumption: Household 

Groups and Building Characteristics.” 
144 Kirsten Gram-hanssen, “Efficient Technologies or User Behaviour , Which Is the More 

Important When Reducing Households’ Energy Consumption ?,” 2013, 447–57, 

https://doi.org/10.1007/s12053-012-9184-4. 
145 van den Brom, Meijer, and Visscher, “Performance Gaps in Energy Consumption: Household 

Groups and Building Characteristics.” 
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existence of nonworker individuals, elderly persons, or under school-age children. 

The schedules for the presence of occupancy, equipment usage, and lighting were 

produced particularly for each room in each case by the author according to the focus 

group study. Energy Plus and Honeybee were used to integrate schedules and 

simulate the building performance. Since the Honeybee does not include room 

separation for residential buildings, the loads for each room were separately defined 

according to the existing occupancy, appliances, and lighting loads. 

The author has interviewed the focus group composed of members of the dominant 

household typologies according to the TUIK, which are single person, couple 

without a child, couple with two children, and extended family with two elderly and 

couple with two children households. The selected focus group is composed of 

working people and their children. The schedules and plan layouts were produced 

based on the information gathered from the study. Weekly schedules were produced 

with the different behaviors for weekdays and weekends. In some cases, multiple 

weekday schedules are used to define the occupant behavior during the week.  

Table 4.2 Household Types in the Case Study 

 Household 

 1 

Household  

2 

Household  

3 

Household 

4 

Total Area of House 44.5 74.25 100 149.25 

Number of Rooms 1LR – 1K – 

1BR – 1BA – 

1C 

1LR – 1K – 

2BR – 1BA-

1C 

1LR – 1K – 

3BR – 2BA -

1L-1C 

1LR – 1K 

– 4BR – 

2BA - 1C 

Number of Occupant 1 2 4 6 

 

Since the energy efficiency of the electrical appliances in the houses is increased, the 

energy consumption of these appliances and lighting were calculated based on the 

efficiency standards of the technical product data. The facade direction of the cases 

is accepted as the north and east in order to prevent different heating energy and 

lighting needs caused by the direction differences. All cases are naturally ventilated, 

and windows are open when the dry bulb temperature is higher than 22°C. The 
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heating setpoint is fixed to 21°C both in day and night. Heating energy source is 

chosen as electricity to make a comparative analysis between heating, equipment, 

and lighting loads. 

Table 4.3 Appliance and Lighting Energy Consumption Data146 

Appliance Watt (W) Usage in a 

Hour (h) 

Watt x Time (Wh) 

Refrigerator 38 1 h 38 

Dishwasher 300 1h 300 

Oven 2000 1h 2000 

Microwave 800 0.2h 160 

Coffee Machine 1000 0.5h 500 

Toaster 2000 0.2h 400 

TV 98 1 h 98 

Washing Machine 223 1 h 223 

Dryer 1000 1 h 1000 

Iron 2400 1 h 2400 

Hair Dryer 1600 0.1 h 160 

Vacuum Cleaner 1000 1 h 1000 

Laptop 90 1 h 90 

Printer 15 0.1 h 1.5 

Phone Charger 4 1 h 4 

LED Blub 12 1 h 12 

                                                 

 

146 Energy Consumption Information Retrieved January 23,2022 from https://www.samsung.com/tr 

, https://www.siemens-home.bsh-group.com/tr/ and, https://www.philips.com.tr/ 

https://www.samsung.com/tr
https://www.siemens-home.bsh-group.com/tr/
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4.4 Production of Schedules 

There are two main goals for the case studies; one is observing the effect of different 

schedules on building energy consumption studies. The other is to compare the 

various households' energy consumption for heating, equipment, and lighting needs. 

The case studies are adopted to the research to analyze the energy performance 

simulation results of different residential buildings and occupancy schedules. This 

chapter explains the production processes of the occupancy, appliance, and lighting 

schedules in each case for energy simulation in Honeybee with Energy Plus. 

4.4.1 Occupancy Schedules 

Occupancy presence schedule was defined for every room that is occupied at least 

an hour during a day. Firstly, the maximum capacity of each room was determined 

with reference to the focus group interview. The program requested the occupancy 

load as the number of people per area (ppl/m2); therefore, the occupancy load for 

each room is unique. Lastly, the presence of the inhabitant was specified with the 

daily schedules. Since the Honeybee is requested the schedule values between 0 and 

1, the occupancy schedule was designated with the ratio of the existing occupant to 

the maximum capacity. For an annual simulation, weekdays and weekends were 

estimated, and the pattern is accepted as the same during the year. 

4.4.2 Equipment Schedules 

The working principles of the appliance schedule show resemblance to the 

occupancy schedule in terms of load calculation and schedule determination. 

According to the existing type of appliances, the total energy load was calculated in 

reference to Table 4.3 for every room with appliances. The equipment load was 

defined as the load per area (W/m2) for Honeybee. The schedule was assigned 

https://tureng.com/tr/turkce-ingilizce/resemblance
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according to the ratio of active appliances to the total load of the room. A weekly 

schedule was used for annual simulation. 

4.4.3 Lighting Schedules 

The interviewees stated the type and number of lighting fixtures. In reference to this 

information, lighting density per area (W/m2)  was calculated and defined to the 

Honeybee. Since the lighting need differs during the year, it has been accepted that 

the optimum need for artificial lighting occurs after 6 pm. The schedule was 

designated similar to the previous schedules with the ratio of active lighting to the 

total capacity of the room. Weekdays and weekends were calculated for a yearly 

simulation, and the pattern is assumed to be consistent throughout the year. 

Daylighting conditions were not considered in the study. All windows height in the 

residences are accepted as the same and 150 cm.  

4.5 Household Type I 

Single-person households constitute 18% of all household typologies in Turkey. In 

the first case, a single-person household is represented in a 44.5 m2 residence. The 

occupant is an employee and works from home for three days, and compulsory to 

commute to work for two days a week. The energy usage for the commute to work 

is not calculated in daily consumption. The weekend is not occupied with any 

obligatory activity.  

The cooling energy need of the building is ignored, and windows are accepted as 

open when the dry bulb temperature exceeds 22°C. The heating setpoint is set to 

21°C. 
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Figure 4.2 Isometric Plan Layout Representation of Case Study-I 

The residential building is located in Ankara, Turkey, 5A climate zone according to 

ASHRAE standards. Materials are also defined as standard according to ASHRAE. 

The residence is an apartment house composed of five spaces; a living room, a 

bedroom, a kitchen, a bathroom, and a corridor. The penetration on the facades is 

located in the north and east directions. 

Table 4.4 General Energy Consumption of Household I 

 Area 

(m²) 

Total 

Energy 

(kWh) 

Energy 

per Area 

(kWh/m2) 

Heating 

Energy 

(kWh) 

Appliance 

Energy 

(kWh) 

Lighting 

Energy 

(kWh) 

Household I 44.5 4842.4 108.8 2738.5 2041.9 62 

4.5.1 Occupancy Schedule 

Since the house is occupied only by a single user, the maximum number of occupants 

in each space is equal. As previously mentioned, the occupant works three days as 

teleworking and two days as regular. The house is unoccupied between 8 am and 6 

pm on office workdays. The usage of the spaces changes according to the 

teleworking days, office workdays, and weekends. The presence of the occupant 
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affects the energy need for heating and the usage of equipment and lighting. As a 

result, appliance and lighting schedules show similarities with the occupancy 

schedules. Since inhabitat is a source of internal heat gain and the heating setpoint is 

constant, the heating energy consumption decreases when the building is occupied.  

   

        (a)            (b) 

 

(c) 

Figure 4.3 Weekly Occupancy Schedule of Household I: (a) teleworking days, (b) 

office workdays, (c) weekends 

4.5.2 Equipment Schedule 

The appliance for each room is determined based on the interview with the occupant. 

The kitchen has the highest equipment load per area since the existence of multiple 

types of appliances. The high load in the living room is caused by the use of iron in 

the room. Similarly, the use of vacuum cleaner in the bedroom is increasing the 

appliance load of the space. The corridor is not used for any appliances, therefore 

not represented in the graphs. 
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Table 4.5 Equipment List and Load in Each Room for Household I 

LR K BR BA 

TV Refrigerator Vacuum Cleaner Washing Machine 

Laptop  Dishwasher Phone Charger Hair Dryer 

Phone Charger Oven   

Iron Coffee Machine   

 Microwave   

144 W/ m² 285.52 W/ m² 133.87 W/ m² 63.83 W/ m² 

 

The maximum consumption occurs on the weekend days, and the minimum belongs 

to office workdays. The peak hour in the three conditions is different for the three 

cases. The kitchen is the most energy-consuming room in the house. 

  

                                (a)                     (b) 

 

(c) 

Figure 4.4 Weekly Equipment Schedule of Household I: (a) home office days, (b) 

office workdays, (c) weekends 
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4.5.3 Lighting Schedule 

Lighting energy consumption is not significantly affected by the post-pandemic 

condition. The existing number of lighting fixtures is determined by the occupant. 

The user does not specify the type of lighting, and LED bulb (12 W) is accepted for 

each specified existing fixture. 

Table 4.6 Lighting Load in Each Room for Household I 

LR K BR BA 

24 W 12 W 24 W 24 W 

1.33 W/ m² 1.14 W/ m² 3.20 W/ m² 4 W/ m² 

 

Since the consumption is determined based on the nighttime, the distinctive critical 

factor is the existence of occupant in the house during the nighttime. Also, the 

activity changes the need for lighting. For instance, the occupant has indicated 

reducing the amount of lighting while using the TV. The bathroom is the only room 

that needs lighting during the daytime. 

          

                 (a)                                                       (b)  

 

(c) 

Figure 4.5 Weekly Lighting Schedule of Household I: (a) home office days, (b) 

office workdays, (c) weekends 
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4.6 Household Type II 

The most dominant household typology is composed of two people and generates 

21% of all households. More than 90% of this type is constituted by families without 

any children. In household II, a couple was investigated in an 86.5 m2 apartment 

house for the case study. Both occupants are employee and work from home on 

weekdays during the Covid-19 pandemic. There are no mandatory activities 

scheduled for the weekend. 

 

Figure 4.6 Isometric Plan Layout Representation of Case Study-II 

The residential building is located in Ankara, Turkey, according to ASHRAE 

standards 5A climate zone. The apartment consists of a living room, two bedrooms, 

a kitchen, a bathroom, and a corridor. One of the bedrooms is used as an office room. 

In order to ignore the differences that may occur due to the facade direction, the 

house has windows on the north and east facades. 

When the dry bulb temperature surpasses 22°C, windows are considered as open, 

and the apartment is naturally ventilated. The building's cooling energy need is 

ignored. 



 

 

59 

Table 4.7 General Energy Consumption of Household II 

 Area 

(m²) 

Total 

Energy 

(kWh) 

Energy 

per Area 

(kWh/m2) 

Heating 

Energy 

(kWh) 

Appliance 

Energy 

(kWh) 

Lighting 

Energy 

(kWh) 

Household II 86.5 6252.2 72 3855.1 2332.4 64.6 

 

4.6.1 Occupancy Schedule 

The occupant load for each room is calculated with the ratio of the occupant to the 

area of the room as ppl/ m². According to the focus group interview, since both 

occupants are teleworking, each room is occupied with a maximum of two people 

during the week. The house is fully occupied on weekdays, and occupants leave the 

house for two hours during weekends. The movement in residence is more active on 

weekdays since the day started earlier, and the use of the room is diverse. 

The presence of an occupant influences the amount of energy required for heating as 

well as the use of equipment and lights. As a result, other schedules resemble the 

occupancy schedules. 

 

    

(a) (b) 

Figure 4.7 Weekly Occupancy Schedule of Household II: (a) weekdays, (b) 

weekends 



 

 

60 

4.6.2 Equipment Schedule 

The occupants have provided the equipment information in the rooms. The energy 

consumption of the appliances is calculated based on the information in Table 4.3. 

The kitchen has the largest equipment load per space because of the variety of 

appliances. The excessive load in the bedroom is derived from high energy-

consuming appliances that are vacuum cleaner and iron. Although the excessive 

consumption of these appliances, their usage time is relatively limited according to 

the others. As a result, the influence of high consuming equipments on instant energy 

use can be observed as excessive; however, total energy usage is affected relatively 

less. There are no appliances used in the corridor. 

Table 4.8 Equipment List and Load in Each Room for Household II 

LR K BR BR 2 BA 

TV Refrigerator Vacuum 

Cleaner 

Laptop  Washing 

Machine 

Phone 

Charger 

Dishwasher Iron Laptop  Hair Dryer 

 Oven  Printer  

 Coffee 

Machine 

 Phone 

Charger 

 

 Toaster    

3.21 W/ m² 249.08 W/ m² 242.86 W/ m² 18.70 W/ m² 79.79 W/ m² 

 

The peak consumption time on weekdays and weekends is different from each other. 

The maximum consumption is represented around 4 pm on weekdays for the 

preparation of the early dinner. However, the energy use increases around 1 and 2 

pm on the weekend due to the use of high-consuming appliances. 
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                                (a)                     (b) 

Figure 4.8 Weekly Equipment Schedule of Household II: (a) weekdays, (b) 

weekends 

4.6.3 Lighting Schedule 

The introduction of new lighting technologies, as well as modifications in lighting 

efficiency, have resulted in significant decreases in the proportion of energy 

consumption. The amount of energy consumed for lighting is considerably less than 

for heating and household appliances. According to the determined lighting number, 

the energy consumption is calculated according to the LED bulb (12 W) in Table 

4.3.  

Table 4.9 Lighting Load in Each Room for Household II 

LR K BR BR 2 BA 

24 W 12 W 12 W 12 W 12 W 

0.76 W/ m² 0.92 W/ m² 0.86 W/ m² 1.13 W/ m² 2.50 W/ m² 

 

The lighting usage naturally concentrated in night time except for the use in the 

bathroom. Because consumption is determined at night, the critical distinguishing 

feature is the presence of occupants in residence during the night. The corridor does 

not have a lighting fixture; therefore, it did not represent in the graphs. The maximum 

consumption is in the living room for the weekdays and bathroom for the weekends 

in this household. 
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             (a)                                                              (b)  

Figure 4.9 Weekly Lighting Schedule of Household II: (a) weekdays, (b) weekends 

4.7 Household Type III 

One-family households constitute more than 65% of households. A quarter of these 

households consist of families with four people, with two children and parents. In 

household III, a family with parents, a high-school child, and a university student 

was studied. The house of the family is a 106,5 m2 apartment. According to the post-

pandemic conditions, one of the parents is working from home, and the other is 

regularly commuting to work. The high school child goes to school, and the 

university student is studied in hybrid education. According to the hybrid system, 

he/she studies at home in the mornings and attends the afternoon classes in the 

university. 

 

Figure 4.10 Isometric Plan Layout Representation of Case Study-III 
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Similar to the previous cases, the house is located in Ankara, and simulation was 

performed 5A climate zone according to the ASHRAE 5A climate zone. The 

apartment is generated by a living room, three bedrooms, a kitchen, two bathrooms, 

a laundry, and a corridor. The penetrations are located on the north and east facades 

of the house. 

The heating setpoint is determined as 21°C, and the apartment is naturally ventilated 

when the outdoor temperature exceeds 22°C. 

Table 4.10 General Energy Consumption of Household III 

 Area 

(m²) 

Total 

Energy 

(kWh) 

Energy 

per Area 

(kWh/m2) 

Heating 

Energy 

(kWh) 

Appliance 

Energy 

(kWh) 

Lighting 

Energy 

(kWh) 

Household III 106 9506.3 89.7 3959.6 5323.4 214.3 

4.7.1 Occupancy Schedule 

The occupancy load for each room is determined as ppl/m² by the Honeybee. Since 

the presence of a teleworking parent and homeschooling child, the apartment is 

occupied every hour on weekdays. The house is fully unoccupied for two hours on 

weekends. The presence of occupants influences the amount of energy required for 

heating as well as the use of equipment and lights. The maximum occupant loads of 

the rooms vary since children have separate rooms. 

Table 4.11 Occupancy Load in Each Room for Household II 

LR K BR BR 1 BR2 

4 ppl 4 ppl 2 ppl 1 ppl 1 ppl 

0.15 ppl/m² 0.40 ppl/m² 0.13 ppl/m² 0.11 ppl/m² 0.10 ppl/m² 

 

According to the focus group study, the living room has the highest number of 

occupants during the day. Although the number of inhabitants increases during 

weekends, the movement of the occupants is more active during the weekdays.  
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(a) (b) 

Figure 4.11 Weekly Occupancy Schedule of Household III: (a) weekdays, (b) 

weekends 

4.7.2 Equipment Schedule 

The occupant has determined the existing appliances in each room in the focus group 

interview. The energy usage of the equipment is determined by using data in Table 

4.3. Since the area is extremely small and the equipment energy consumption is high, 

the laundry room has the highest equipment load in this household case. However, 

in comparison to the other rooms, the appliances in the laundry have a relatively 

shorter usage time.  

Table 4.12 Equipment List and Load in Each Room for Household III 

LR K BR BR 1 BR 2 BA L C 
TV Refrigerator Phone 

Charger 

Phone 

Charger 

Phone 

Charger 

Hair 

Dryer 

Washing 

Machine 

Vacuum 

Cleaner 

Laptop  Dishwasher  Laptop  Laptop   Dryer  

Phone 

Charger 

Oven     Iron  

 Coffee 

Machine 

      

 Toaster       

 Microwave       

6.98   

W/ m² 

339.80   

W/ m² 

0.25   

W/ m² 

10.75 

W/ m² 

8.95  

W/ m² 

25.60 

W/ m² 

724.60 

W/ m² 

100   

W/ m² 
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The teleworking parent uses the living room as the office space and increases the 

energy consumption of the room due to the use of a personal computer during the 

day. The peak point of consumption occurs for dinner preparation on weekdays. On 

the weekdays, the difference between the maximum and minimum consumption is 

relatively less than on the weekend. On the other hand, the weekend peak represents 

the kitchen during the morning, and the value is almost preserved until 2 pm for 

housework. 

     

(a) (b) 

Figure 4.12 Weekly Equipment Schedule of Household III: (a) weekdays, (b) 

weekends 

4.7.3 Lighting Schedule 

Lighting schedules are the least affected by the Covid-19 pandemic compared to 

occupancy and equipment schedules since they are only activated during the night. 

The number of the lighting fixtures is determined according to the household, and 

the energy consumption is estimated using the LED bulb (12 W). 

Table 4.13 Lighting Load in Each Room for Household III 

LR K BR BR 1 BR 2 BA P.BA L C 

24 W 12 W 36 W 24 W 24 W 12 W 12 W 12 W 24 W 

0.87   

W/ m² 

1.20     

W/ m² 

2.29 

W/ m² 

2.74 

W/ m² 

2.29  

W/ m² 

1.92 

W/ m² 

1.92 

W/ m² 

2.40 

W/ m² 

2.40   

W/ m² 
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The presence of an occupant in residence at night is the distinguishing key 

component for the lighting. During the day, the rooms that require lighting are the 

bathrooms and laundry. This household's peak lighting usage occurs in the living 

room during the week. An apparent lighting consumption is in the corridor after 

midnight. The household uses the corridor lighting as a night light. 

 

     

(a) (b)  

Figure 4.13 Weekly Lighting Schedule of Household III: (a) weekdays, (b) 

weekends 

4.8 Household Type IV 

According to the TUIK households research, extended families generate a small 

proportion and constitute 14% of all household typologies in Turkey. Around 73% 

of the extended family households include more than six-member. An extended 

family is studied as household IV in order to observe the impact of the occupant 

number on energy consumption. The household is composed of two elderly, parents, 

an elementary school and a high school child. Both parents and children commute to 

work and school. The house is occupied only by elderly individuals during the day. 
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Figure 4.14 Isometric Plan Layout Representation of Case Study-IV 

The residence is located in Ankara, Turkey. The ASHRAE 5A climate zone and 

ASHRAE standards construction materials are adopted for energy simulations. The 

apartment consists of a living room, four bedrooms, a kitchen, two bathrooms, and a 

corridor. The facade directions are accepted as the same as the previous case studies 

facing north and east. 

The apartment is ventilated naturally. When the outdoor temperature exceeds 22°C, 

the windows are assumed to be open. 

Table 4.14 General Energy Consumption of Household IV 

 Area 

(m²) 

Total 

Energy 

(kWh) 

Energy per 

Area 

(kWh/m2) 

Heating 

Energy 

(kWh) 

Appliance 

Energy 

(kWh) 

Lighting 

Energy 

(kWh) 

Household IV 149 9518.5 63.8 5576.8 3759.5 182.2 

4.8.1 Occupancy Schedule 

The house is occupied by relatively more occupants than in previous cases, and the 

occupancy loads for each room are different. Due to the number and diversity of 

occupants, the house is always occupied by at least one occupant. The presence of 
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occupants in the dwelling increases the energy need for heating, equipment, and 

lighting. Appliance and lighting schedules show similarities to the occupancy 

schedules. 

Table 4.15 Occupancy Load in Each Room for Household IV 

LR K BR BR 1 BR2 BR3 

6 ppl 6 ppl 2 ppl 1 ppl 1 ppl 2 ppl 

0.17 

ppl/m² 

0.23 

ppl/m² 

0.10 

ppl/m² 

0.09 

ppl/m² 

0.09 

ppl/m² 

0.13 

ppl/m² 

 

The living room and the kitchen are the common areas for the household and 

represent a dominance in the schedules. The occupancy load is slightly higher on 

weekends. Since the weekday and weekend occupancy graphs are related, it is 

possible to deduce that the elderly people do not prominently affect the movement 

in the house. 

 

  

(a) (b) 

Figure 4.15 Weekly Occupancy Schedule of Household IV: (a) weekdays, (b) 

weekends 

4.8.2 Equipment Schedule 

The inhabitants specified the equipment information for each room. According to 

Table 4.3, the equipment load of the rooms is calculated by the author. Since the 
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usage time of the appliances is changeable, the room loads are only informative with 

the equipment schedules. In this sense, the bathroom has the highest load rate and 

consumes 0.64 kW weekly. However, the kitchen consumes 4.5 kW of energy in a 

week with a lower equipment load. The reason for the inverse relation is the 

difference between the room areas and the equipment usage schedules. Bedroom 3 

does not include any appliances and is excluded in the graphs. 

Table 4.16 Equipment List and Load in Each Room for Household IV 

LR K BR BR 1 BR 2 BA P.BA C 
TV Refrigerator Phone 

Charger 

Phone 

Charger 

Phone 

Charger 

Washing 

Machine 

Hair 

Dryer 

Vacuum 

Cleaner 

Vacuum 

Cleaner 

Dishwasher Iron Laptop  Laptop  Dryer   

Phone 

Charger 

Oven    Hair 

Dryer 

  

 Toaster       

 TV       

31.49   

W/ m² 

109.08   

W/ m² 

115.58

W/ m² 

8.55   

W/ m² 

8.55  

W/ m² 

240.52 

W/ m² 

37.65 

W/ m² 

50.38   

W/ m² 

 

Equipment energy consumption is relatively higher on the weekends due to the 

presence of all households in the apartment. Only the elderly people occupy the 

house in the daytime during the weekdays. However, according to the weekday 

graph, there is not a significant consumption between 12 and 16 pm. As a result, 

elderly people do not represent high energy-consuming behaviors during the day in 

the dwelling. The housework and the increased number of occupants cause excessive 

energy use on the weekend. 
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(a) (b) 

Figure 4.16 Weekly Equipment Schedule of Household IV: (a) weekdays, (b) 

weekends 

4.8.3 Lighting Schedule 

The lighting usage is minimal in comparison to the other household equipment. Also, 

the improvements in lighting efficiency have resulted in considerable reductions in 

the amount of energy consumed by lighting. The occupant has only specified the 

number of the lighting fixtures. Since the user does not indicate information about 

the kind of illumination, each fixture is accepted as having a LED bulb. 

Table 4.17 Lighting Load in Each Room for Household IV 

LR K BR BR 1 BR 2 BR 3 BA P.BA C 

24 W 24 W 24 W 12 W 12 W 12 W 24 W 12 W 36 W 

0.69 

W/ m² 

0.92 

W/ m² 

1.15 

W/ m² 

1.09 

W/ m² 

1.09 

W/ m² 

0.77 

W/ m² 

4.17 

W/ m² 

2.82 

W/ m² 

1.81 

W/ m² 

 

Due to most households leaving the house early on weekdays and elderly occupants 

starting the day early, lighting energy consumption starts in the early morning. Only 

bathroom lighting is used in the daytime. The living room is the room where the 

lighting is used longest time. Usage of lighting increases parallel to the rise in the 

number of the household member during the weekends. 
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(a) (b)  

Figure 4.17 Weekly Lighting Schedule of Household IV: (a) weekdays, (b) 

weekends 

4.9 Results and Discussion 

There are numerous factors that affect the energy consumption of a residential 

building, such as “disposable household income, age, gender composition in the 

household, gender of the household head, education, occupation, marital status, 

home ownership, household size, number of children, location, cooking habit, 

availability of fuel alternatives and accessibility, cooking utensils, wage level in the 

labour market, occupation, house type, number of rooms and size of residence (in 

m2) and access to energy carriers.”147 The main research question, “To what extent 

has the occupants’ post-pandemic daily routines changed the energy consumption of 

residential buildings?” is answered during this chapter. 

This study investigates the energy consumption of four different households in terms 

of heating, equipment, and lighting usage during post-pandemic daily routines. The 

first household has both teleworking and regular working days, and it can be 

compared as pre-pandemic, lockdown, and post-pandemic period in itself. The two-

day regular working graph represents the pre-pandemic life and behaviors. The house 

is occupied only between 6 pm, and 8 am. The midday is unoccupied, and as a result, 

                                                 

 

147 Luc Vinet and Alexei Zhedanov, “A ‘Missing’ Family of Classical Orthogonal Polynomials,” 

ZEW Economic Studies Volume 44 44 (November 7, 2010): 43, https://doi.org/10.1088/1751-

8113/44/8/085201. 
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equipment energy consumption is minimum, and lighting is not used during the day. 

The three teleworking days is the simulation of the lockdown period of the pandemic. 

According to the simulation results, the daily energy consumption of the teleworking 

day is 2.8 times higher than the regular working day. When evaluating as a week, 

the case is referenced to the post-pandemic conditions. The weekly equipment 

energy consumption of the current case is 43%  higher than the pre-pandemic period 

and 20% lower than the lockdown period. 

If the case studies are considered similar to the previous example, the second 

household is an example for the lockdown stage of the Covid-19 since all occupants 

are teleworking. Household III represents the post-pandemic daily life; the family is 

a combination of teleworking, distance education, regular working and education. 

And the last case study shows the pre-pandemic behaviors of occupants in a 

residential unit. All these comparisons are regardless of the number of people in the 

households. Therefore, the simulation results have not been analyzed with the 

prementioned periods assigned to the household cases. All families are modeled and 

simulated according to the focus group interview on November 2021. 

The main factor that affects heating consumption is the area of the house. On the 

other hand, the difference between household II and III heating energy use can not 

be explained by the size of the residence. In this case, the higher number of occupants 

and more use of appliances generates more internal heat gains and decreases heating 

load. Equipment energy use can be associated with the number of occupants and the 

duration of occupancy. The reason for the high energy consumption for equipment 

on household III is the presence of a teleworking parent and homeschooling child.  

The effect of the Covid-19 pandemic can be observed between households III and 

IV.  Although the number of occupants and the residence area of household IV is 

higher than household III, the total annual energy consumption of these cases is quite 

similar. The high energy consumption for equipment on household III is caused by 

a home working parent and homeschooling child. Two conclusions can be observed 

according to this similarity. The first is the impact of the occupancy existence during 
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the day on energy consumption, and the other is the energy-efficient behaviors of 

elderly people.  

According to graphs in household cases, the most frequently used appliances are the 

lighting, but the lighting energy consumption is too low to make a comparison.  

 

Figure 4.18 Energy End-Uses of Households 

The energy consumption for each person decreases as the number of occupants 

increases. However, this assumption is not valid for the per area calculations. 

According to Figure 4.20, the total energy consumption per area of households with 

home office workers (household I, II, and III) is higher than the households with 

regular employees and students that is household IV. According to simulations, no 

direct relationship was observed between the size of the residence and equipment 

energy consumption.  
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Figure 4.19 Energy Consumption per Occupant 

 

Figure 4.20 Energy Consumption per Area 
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How did post-pandemic conditions change the energy-related routines of the 

occupants? 

The level of income is found to be positively related to the rate of consumption. 

Although high-income and highly educated households are more conscious about 

energy efficiency and sustainability, they consume more electricity due to the more 

usage of multiple types of appliances compared to other households. According to 

Brom et al., as an exception, single-person households with a high income have the 

lowest average energy consumption.148 They explained this result with the possibility 

of spending less time at home compared with other household types. Although the 

existing case studies represent the high-income group, the influence of the pandemic 

can be observed as the increased time of dwelling usage.  

Also, people owned more appliances to satisfy their entertainment needs at home 

since all outdoor entertainment places were unavailable during the lockdown. As a 

result, people still spend more time at houses than before, and the usage change 

increases the energy consumption at residences. 

How does the size of the dwellings affect the energy consumption per area? 

The study shows that total energy needs increase when the size of the house increase. 

The size of the dwelling affects only the heating energy need. The heating setpoint 

is assumed as 21°C in all cases. Therefore, the main difference in heating energy 

needs is caused by the internal heat gains from occupants, appliances, and lighting. 

According to graphs, the influence of these factors is less than the size of the dwelling 

since total heating energy need increases from household I to household IV. 

However, the per area graph represents the decrease of heating energy need per area 

when the total area of the house increases. The internal heat gains can explain the 

difference between households. 

                                                 

 

148 van den Brom, Meijer, and Visscher, “Performance Gaps in Energy Consumption: Household 

Groups and Building Characteristics.” 
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How does the number of household members affect the energy consumption per 

person? 

Previous studies show that single-person households are more frequent in the low 

energy-consuming group, while two-person households are usually in the high 

energy-consuming group.149 The total energy consumption affirms the previous 

researches. However, the total energy need for per person apparently increases when 

the number of household members decreases. According to the simulation results, 

the energy consumption per person in a single-person household is three times that 

of a six-person household. The teleworking or distance learning member influences 

the sub-categories of heating, equipment, and lighting use. 

What is the relationship between heating, appliance, and lighting energy use 

according to the type of household? 

The location of the households is in Ankara; therefore, a significant heating energy 

need is expected to be observed in the performance simulations. The primary energy 

consumption of households I, II, and IV has resulted in heating need. On the other 

hand, in household II, the equipment energy use is 35% more than the heating energy 

use. One of the reasons is that there is more equipment in the house than on average. 

Also, the presence of teenagers in the dwelling has an important impact on equipment 

energy consumption.150 And finally, the use of work-related appliances have caused 

unexpected result. The lighting energy consumption does not provide sufficient data 

for analysis.  

 

 

                                                 

 

149 Ibid. 
150 Ibid. 
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How did teleworking and distance education influence the energy consumption in 

dwellings? 

Household I, II, and III have teleworking or distance learning members. The main 

influence of teleworking and distance education is the increase in appliance usage. 

In the first household, the total energy consumption of the home working days is 

more than twice that of the regular workdays. All members of household II and half 

of household III occupy the house on weekdays for working or learning. The main 

difference between these houses is caused by the equipment used. The teleworking 

parent in household III also does housework and uses high-energy consuming 

appliances. However, the usage pattern of the same appliances in household II is less 

frequent since the number of members is fewer, and there is the non-existence of 

teenage or child members. 

How can the role of occupant behavior in energy consumption be understood by 

evaluating the specific household types and building characteristics? 

This study analyses four types of households in different dwellings. All dwellings 

are apartment houses with a different plan layout. Further studies are needed to 

consider more characteristic features of residences. The differences in the simulation 

results are only caused by the behaviors of the occupant since all other variables are 

accepted as constant for each case. The findings of this study are expressive for the 

defined focus group and provide a better understanding of the influence of the 

occupant on energy consumption in residences. 

This thesis represents the following results with reference to the studied households; 

 The number of occupants does not directly change the total energy 

consumption. 

 The size of the residence has an impact on heating energy use; however, no 

direct relationship was observed with equipment and lighting consumption. 

 The presence of home office or homeschooling occupants has a 

distinguishable impact on daily energy use. 
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 The effect of elderly individuals on total energy consumption is minimum 

compared to other occupants. This can be explained by the limited appliance 

usage of these members. 

 Since the increased efficiency of lighting, the energy need for lighting is 

considerably less than heating and equipment energy usage. 

 Kitchens consume most of the equipment energy in a residential unit due to 

equipment density. 

 The heating energy consumption of the hall is the highest in all residences 

since it has the largest area. 

As a result of the study, the essential component in characterizing energy 

consumption is the number of occupants in residence. The energy consumption 

increases as the number of occupants increase. However, the increase is not directly 

proportional. Energy usage per person represents an opposite correlation. As a result, 

it is possible to express that the households with more members are more energy 

efficient. 

In conclusion, this study investigated both the total energy consumption of 

residential units through schedules and the effect of each space, occupant, and 

appliance on buildings' energy consumption. The performance simulations are a 

simplification of the reality. A detailed understanding of occupant behaviors is 

significant for energy efficiency studies in architecture and building science. 
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CHAPTER 5  

5 CONCLUSION 

The conducted literature review represents the importance of human-building 

interaction in terms of the energy performance of the buildings. Occupants and 

occupant behavior is described as the unpredicted factor for the buildings' energy 

consumption. This study included the occupancy schedules to the energy simulations 

to observe their effect and decrease the performance gap mentioned in the literature. 

The effects of the Covid-19 pandemic may last for an extended period of time. 

Although the impact of the pandemic on daily life has been reduced, sustained 

consequences on behavioral patterns may be seen in social life. People prefer to 

spend time either in their homes or open-air spaces. As a result of the pandemic's 

impacts on buildings, there should be a new knowledge of design and environmental 

systems to correspond to the new lifestyles. The thesis introduce occupants as the 

human building interaction objects and aims to predict more accurate result by 

introducing various schedules to performance simulations.  

TUIK household study is very significant for the thesis. The case studies were 

determined according to the dominant household types in the data. Real households 

that are suitable to the selected types were found, and information about their daily 

lives and the residential unit was obtained through interviews. In reference to the 

interviews, occupancy, equipment, and lighting schedules were created and 

simulated in the BPS tool Energy Plus. 

The purpose of this study is to explore the impact of different households’ energy 

consumption during the post-pandemic lifestyle in terms of heating, equipment, and 

lighting energy consumption. Three different schedules are integrated into the BPS 

in order to evaluate the energy consumption results. Four different household types 

are analyzed in the case studies. According to the results of this study, analyzing 
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specific household types helps to understand better the effect of the occupant on 

actual energy usage and an efficient technique to observe the impact of inhabitants 

on residential energy usage. 

This thesis mainly focuses on the occupant schedules of residential environments, 

rather than office buildings which are mostly studied according to the literature of 

the energy research and schedules. The goal of the study is to understand the current 

relationship between living and working environments under the Covid-19 

conditions. In this thesis, the post-pandemic occupancy schedules of family types 

were examined. The presence of home working and homeschooling members are 

simulated to evaluate the changes in the post-pandemic conditions. The post-

pandemic schedules have increased the total amount of energy used and changed the 

most energy-consuming hours during the day in residential units. Since sustainability 

is a significant feature in architecture, architects, engineers, and policymakers should 

consider the current loads in the residential buildings. A detailed understanding of 

how occupants actually use energy is required for the responsible actors to increase 

the efficiency of energy-saving methods. 

According to the results of the study, the essential component in characterizing 

energy consumption is the number of occupants in houses. The energy consumption 

increases as the number of occupants increase. However, the increase is not directly 

proportional. Energy usage per person represents an opposite correlation. As a result, 

households with more members are more energy efficient. 

In reference to the other research about occupant energy consumption in the 

literature, studying with larger dataset results in more accurate predictions on energy 

use. This information may be used to conduct comprehensive calculations for recent 

and emerging architectural projects.  
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5.1 Limitations of the Study 

The thesis is subjected to some limitations that need to be addressed. The first 

limitation of the study is the generalization of the results. The size of the focus group 

is highly limited to acknowledge information about the society. Also, in order to 

obtain accurate and comparable results, the focus group is mainly restricted with the 

limitation of education level, employment status, income group, and location 

information. Since the interview is required personal information and representation 

of behaviors, enlargement of the study group is voluntary. The data process of each 

household requires an intense study on interview results.  

Although the study is investigated energy behaviors of different households during 

the post-pandemic period, the absence of pre-pandemic or strict lockdown energy 

information is complicated to understand the value of the study. The Covid-19 is a 

long period to gather data from a household without changes that will affect the 

energy consumption. The description of each day in a week creates an enormous 

workload, and the daily differences are negligible. Therefore, the weekend and 

weekdays separation is used as a generalization of the occupant behavior distinction.  

Secondly, some assumptions were needed to equilibrate the household case studies. 

The facade direction of the residence, construction materials, window sizes, heating 

energy source, the floor of the dwelling, cooling system, heating set point, and 

appliance models are accepted as the same or at least similar to avoid inconsistencies 

that may occur from these differences. The building performance model did not 

calibrated, since the focus of the study is the effect of different households rather 

than the performance gap. 

The Honeybee is a Grasshopper plug-in that works with the Energy Plus performance 

simulation tool. The plug-in has a friendly interface; however, it has some 

limitations. The residential building type has no subcategories for different rooms. 

As a result, some properties are manually defined to the assigned rooms. The 

Honeybee results in some unexpected errors that influence the simulation results. 
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Therefore, the results need to be analyzed before the data transformation in order to 

prevent any inconsistency due to errors. Even though the mentioned limitations, the 

study enhances the understanding of energy-related occupant behaviors in households. 

5.2 Suggestions for Further Studies 

The current study has identified several research problems on energy-related 

occupancy behavior in residential buildings. However, the subject is a complex, 

multivariable and multidisciplinary field of inquiry. Future research into the 

interrelationship between different energy behaviors of occupants is needed to 

construct more precise predictions in energy performance assumptions. 

More work with larger sample sizes and data is required to increase the accuracy and 

reliability of the simulation results and the generalization of the outcomes. The 

simulation methods can be developed with the advanced usage of BPS tools. Even 

though fundamental modeling techniques are sufficient for the purpose of the study, 

the method used for modeling occupancy schedules would be enhanced with 

comprehensive and advanced methods such as agent-based and stochastic models. 

And finally, two methods can be suggested to make a comparative analysis. First is 

examining electricity and heating bills covering the pre-pandemic and post-

pandemic periods with the simulations. Secondly, conducting case studies based on 

longer durations and regular interviews enables comparisons between periods. 
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APPENDICES 

A. Weekday Occupancy Schedule and Load Calculations  

hours room 1 room 2 room 3 room 4 room 5 

1 0 1 1 1 0 

2 0 1 1 1 0 

3 0 1 1 1 0 

4 0 1 1 1 0 

5 0 1 1 1 0 

6 0 1 1 1 0 

7 0 0.5 0 1 0.5 

8 0 0 0 1 0.25 

9 0 0 0 0 0.5 

10 0.25 0 0 1 0 

11 0.25 0 0 1 0 

12 0.25 0 0 1 0 

13 0.5 0 0 0 0.25 

14 0.5 0 0 0 0 

15 0.25 0 0 0 0 

16 0.25 0 1 0 0 

17 0.5 0 0 0 0 

18 0.5 0 0 0 0.5 

19 0 0 0 0 1 

20 0.75 0 1 0 0 

21 0.5 0 1 1 0 

22 0.5 0 1 1 0 

23 0.5 0 1 1 0 

24 0 1 1 1 0 

max capacity 4 2 1 1 4 

  room 1 room 2 room 3 room 4 room 5 

m2 27.5 15.75 8.75 10.5 10 

ppl/m2 0.15 0.13 0.11 0.10 0.40 

  



 

 

92 

B. Total Equipment Load of Each Room 

m2 27.5 15.75 8.75 10.5 10 

  room 1 room 2  room 3  room 4  room 5 

  98 4 90 90 38 

  90   4 4 300 

  4       2000 

          500 

          400 

          160 

watt 192 4 94 94 3398 

watt/m2 6.98 0.25 10.74 8.95 339.80 
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C. Weekday Equipment Usage Schedule  

hours room 1 room 2  room 3  room 4  room 5 

1 0 1 0.04 0.04 0.01 

2 0 1 0.04 0.04 0.01 

3 0 1 0.04 0.04 0.01 

4 0 1 0.04 0.04 0.01 

5 0 1 0.04 0.04 0.01 

6 0 1 0.04 0.04 0.01 

7 0 0 0 0.04 0.28 

8 0 0 0 0.04 0.28 

9 0 0 0 0 0.10 

10 0.47 0 0 0.96 0.10 

11 0.53 0 0 0.96 0.10 

12 0.53 0 0 0.96 0.01 

13 0.98 0 0 0.96 0.06 

14 1 0 0 0 0.16 

15 1 0 0 0 0.01 

16 0.47 0 0.96 0 0.01 

17 0.98 0 0.96 0 0.01 

18 0.51 0 0 0 0.65 

19 0 0 0 0 0.16 

20 0.51 0 0 0 0.01 

21 0.51 0 0 0 0.01 

22 0.51 0 0.96 0.96 0.01 

23 0.51 0 0.96 0.96 0.01 

24 0 1 0 0.96 0.01 

max capacity 192 4 94 94 3398 

  room 1 room 2  room 3  room 4  room 5 

m2 27.5 15.75 8.75 10.5 10 

watt/m2 6.98 0.25 10.74 8.95 339.80 
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D. Weekday Lighting Usage Schedule  

hours room 1 room 2 room 3 room 4 room 5 

1 0 0 0 0.5 0 

2 0 0 0 0 0 

3 0 0 0 0 0 

4 0 0 0 0 0 

5 0 0 0 0 0 

6 0 0.33 0.5 0 1 

7 0 0 0.5 0 1 

8 0 0 0 0 0 

9 0 0 0 0 0 

10 0 0 0 0 0 

11 0 0 0 0 0 

12 0 0 0 0 0 

13 0 0 0 0 0 

14 0 0 0 0 0 

15 0 0 0 0 0 

16 0 0 0 0 0 

17 0 0 0 0 0 

18 1 0 0 0 1 

19 1 0 0 0 1 

20 1 0 1 0 0 

21 1 0 1 0.5 0 

22 1 0 1 0.5 0 

23 0.5 0 0.5 0.5 0 

24 0.5 0.66 0.5 0.5 0 

max capacity 24 36 24 24 12 

  room 1 room 2 room 3 room 4 room 5 

m2 27.5 15.75 8.75 10.5 10 

watt/m2 0.87 2.29 2.74 2.29 1.20 

 

 


